人工晶体学报 ›› 2022, Vol. 51 ›› Issue (2): 333-343.
张序清1,2, 罗昊1, 李佳君2, 王蓉2, 杨德仁1,2, 皮孝东1,2
收稿日期:
2021-08-20
出版日期:
2022-02-15
发布日期:
2022-03-14
通讯作者:
皮孝东,博士,教授。E-mail:xdpi@zju.edu.cn
作者简介:
张序清(1990—),男,浙江省人,博士。E-mail:zhang_xuqing@zju.edu.cn
基金资助:
ZHANG Xuqing1,2, LUO Hao1, LI Jiajun2, WANG Rong2, YANG Deren1,2, PI Xiaodong1,2
Received:
2021-08-20
Online:
2022-02-15
Published:
2022-03-14
摘要: 碳化硅(SiC)具有禁带宽度大、电子饱和漂移速度高、击穿场强高、热导率高、化学稳定性好等优异特性,是制备高性能功率器件等半导体器件的理想材料。得益于工艺简单、操作便捷、设备要求低等优点,湿法腐蚀已作为晶体缺陷分析、表面改性的常规工艺手段,应用到了SiC晶体生长和加工中的质量检测以及SiC器件制造。根据腐蚀机制不同,湿法腐蚀可以分为电化学腐蚀和化学腐蚀。本文综述了不同湿法腐蚀工艺的腐蚀机理、腐蚀装置和应用领域,并展望了SiC湿法腐蚀工艺的发展前景。
中图分类号:
张序清, 罗昊, 李佳君, 王蓉, 杨德仁, 皮孝东. 半导体碳化硅湿法腐蚀工艺研究[J]. 人工晶体学报, 2022, 51(2): 333-343.
ZHANG Xuqing, LUO Hao, LI Jiajun, WANG Rong, YANG Deren, PI Xiaodong. Research Progress on Wet Etching of Semiconductor SiC[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(2): 333-343.
[1] 杨祥龙,杨 昆,陈秀芳,等.高质量N型SiC单晶生长及其器件应用[J].人工晶体学报,2015,44(6):1427-1431. YANG X L, YANG K, CHEN X F, et al. Growth and device application of high quality N-type SiC single crystals[J]. Journal of Synthetic Crystals, 2015, 44(6): 1427-1431(in Chinese). [2] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [3] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): P603-P608. [4] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422. [5] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [6] WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Progress in Materials Science, 2015, 72: 1-60. [7] STEINER J, RODER M, NGUYEN B D, et al. Analysis of the basal plane dislocation density and thermomechanical stress during 100 mm PVT growth of 4H-SiC[J]. Materials, 2019, 12(13): 2207. [8] SUN W, SONG Y T, LIU C J, et al. Basal plane dislocation-threading edge dislocation complex dislocations in 6H-SiC single crystals[J]. Materials Express, 2015, 5(1): 63-67. [9] 彭 燕,陈秀芳,彭 娟,等.高质量半绝缘ϕ150 mm 4H-SiC单晶生长研究[J].人工晶体学报,2016,45(5):1145-1152. PENG Y, CHEN X F, PENG J, et al. Study on the growth of high quality semi-insulating ϕ150 mm 4H-SiC single crystal[J]. Journal of Synthetic Crystals, 2016, 45(5): 1145-1152(in Chinese). [10] HARRIS J M, GATOS H C, WITT A F. Identification of the (0001) and the (0001) surfaces of silicon carbide[J]. Journal of the Electrochemical Society, 1969, 116(5): 672. [11] CHRISTIANSEN K, HELBIG R. Anisotropic oxidation of 6H-SiC[J]. Journal of Applied Physics, 1996, 79(6): 3276-3281. [12] KAYAMBAKI M, TSAGARAKI K, CIMALLA V, et al. Crystal quality evaluation by electrochemical preferential etching of p-type SiC crystals[J]. Journal of the Electrochemical Society, 2000, 147(7): 2744. [13] CHANG W H. Micromachining of p-type 6H-SiC by electrochemical etching[J]. Sensors and Actuators A: Physical, 2004, 112(1): 36-43. [14] ZHANG Y, LI R L, ZHANG Y J, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838. [15] KAWADA Y, TAWARA T, NAKAMURA S I, et al. Anisotropic transformation of 4H-SiC etching shapes by high-temperature annealing and its enhancement by ion implantation[J]. Japanese Journal of Applied Physics, 2010, 49(4): 040203. [16] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46. [17] 章安辉,李 劼.碳化硅单晶微管道缺陷测试研究[J].科技信息,2011(15):68-69+185. ZHANG A H, LI J. Study on the measurement of micropipes in SiC crystals[J]. Science & Technology Information, 2011(15): 68-69+185(in Chinese). [18] CORRÊA S A, RADTKE C, SOARES G V, et al. Presence and resistance to wet etching of silicon oxycarbides at the SiO2/SiC interface[J]. Electrochemical and Solid-State Letters, 2008, 11(9): H258. [19] IMAMURA K, AKAI T, KOBAYASHI H. Planarization mechanism for 6H-SiC (0001) Si-faced surfaces using electrochemical reactions[J]. Materials Research Express, 2019, 6(5): 055906. [20] VAN DORP D H, WEYHER J L, KELLY J J. Anodic etching of SiC in alkaline solutions[J]. Journal of Micromechanics and Microengineering, 2007, 17(4): S50-S55. [21] SHOR J S, KURTZ A D, GRIMBERG I, et al. Dopant-selective etch stops in 6H and 3C SiC[J]. Journal of Applied Physics, 1997, 81(3): 1546-1551. [22] MORISAKI H, ONO H, YAZAWA K. Photoelectrochemical properties of single-crystalline n-SiC in aqueous electrolytes[J]. Journal of the Electrochemical Society, 1984, 131(9): 2081-2086. [23] GERISCHER H. Electrolytic decomposition and photodecomposition of compound semiconductors in contact with electrolytes[J]. Journal of Vacuum Science and Technology, 1978, 15(4): 1422-1428. [24] SHOR J S, OSGOOD R M, KURTZ A D. Photoelectrochemical conductivity selective etch stops for SiC[J]. Applied Physics Letters, 1992, 60(8): 1001-1003. [25] VERHAVERBEKE S, TEERLINCK I, VINCKIER C, et al. The etching mechanisms of SiO2 in hydrofluoric acid[J]. Journal of the Electrochemical Society, 1994, 141(10): 2852-2857. [26] RYSY S, SADOWSKI H, HELBIG R. Electrochemical etching of silicon carbide[J]. Journal of Solid State Electrochemistry, 1999, 3(7/8): 437-445. [27] VAN DORP D H, SATTLER J J H B, DEN OTTER J H, et al. Electrochemistry of anodic etching of 4H and 6H-SiC in fluoride solution of pH 3[J]. Electrochimica Acta, 2009, 54(26): 6269-6275. [28] VAN DE LAGEMAAT J, VANMAEKELBERGH D, KELLY J J. Photoelectrochemical characterization of 6H-SiC[J]. Journal of Applied Physics, 1998, 83(11): 6089-6095. [29] CAO A T, LUONG Q N T, DAO C T. Influence of the anodic etching current density on the morphology of the porous SiC layer[J]. AIP Advances, 2014, 4(3): 037105. [30] SUGITA T, HIRAMATSU K, IKEDA S, et al. Fabrication of pores in a silicon carbide wafer by electrochemical etching with a glassy-carbon needle electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2580-2584. [31] YANG X, SUN R Y, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC (0001) for electrochemical mechanical polishing[J]. Electrochimica Acta, 2018, 271: 666-676. [32] CHEN Z J, ZHAO Y H. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions[J]. Electrochemistry Communications, 2019, 109: 106608. [33] YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface[J]. Electrochemistry Communications, 2019, 100: 1-5. [34] SHISHKIN Y, KE Y, DEVATY R P, et al. Fabrication and morphology of porous p-type SiC[J]. Journal of Applied Physics, 2005, 97(4): 044908. [35] WANG S, HUANG Q, GUO R, et al. Study on the layering phenomenon of SiC porous layer fabricated by constant current electrochemical etching[J]. Nanotechnology, 2020, 31(20): 205702. [36] LIU Y, LIN W, LIN Z Y, et al. A combined etching process toward robust superhydrophobic SiC surfaces[J]. Nanotechnology, 2012, 23(25): 255703. [37] SHISHKIN Y, CHOYKE W J, DEVATY R P. Photoelectrochemical etching of n-type 4H silicon carbide[J]. Journal of Applied Physics, 2004, 96(4): 2311-2322. [38] BOZACK M J, CHOYKE W J, MUEHLHOFF L, et al. Reaction chemistry at the Si (100) surface: control through active-site manipulation[J]. Journal of Applied Physics, 1986, 60(10): 3750-3754. [39] GAUTIER G, CAYREL F, CAPELLE M, et al. Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces[J]. Nanoscale Research Letters, 2012, 7(1): 1-6. [40] KE Y, YAN F, DEVATY R P, et al. Surface polishing by electrochemical etching of p-type 4H SiC[J]. Journal of Applied Physics, 2009, 106(6): 064901. [41] SHOR J S, GRIMBERG I, WEISS B Z, et al. Direct observation of porous SiC formed by anodization in HF[J]. Applied Physics Letters, 1993, 62(22): 2836-2838. [42] YANG X, SUN R Y, KAWAI K, et al. Surface modification and microstructuring of 4H-SiC(0001) by anodic oxidation with sodium chloride aqueous solution[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2535-2542. [43] IMONKA V, HÖSSINGER A, WEINBUB J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide[J]. Journal of Applied Physics, 2016, 120(13): 135705. [44] GOTO D, HIJIKATA Y, YAGI S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in situ spectroscopic ellipsometry[J]. Journal of Applied Physics, 2015, 117(9): 095306. [45] SHOR J S, KURTZ A D. Photoelectrochemical etching of 6H-SiC[J]. Journal of the Electrochemical Society, 1994, 141(3): 778-781. [46] SCHNABEL C, WÖRNER M, GONZÁLEZ B, et al. Photoelectrochemical characterization of p- and n-doped single crystalline silicon carbide and photoinduced reductive dehalogenation of organic pollutants at p-doped silicon carbide[J]. Electrochimica Acta, 2001, 47(5): 719-727. [47] 路家斌,熊 强,阎秋生,等.紫外光催化辅助SiC抛光过程中化学反应速率的影响[J].表面技术,2019,48(11):148-158. LU J B, XIONG Q, YAN Q S, et al. Effect of chemical reaction rate in ultraviolet photocatalytic auxiliary SiC polishing process[J]. Surface Technology, 2019, 48(11): 148-158(in Chinese). [48] SHOR J S, ZHANG X G, OSGOOD R M. Laser-assisted photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1992, 139(4): 1213-1216. [49] SHOR J S, OSGOOD R M. Broad-area photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1993, 140(8): L123-L125. [50] VAN DORP D H, KELLY J J. Photoelectrochemistry of 4H-SiC in KOH solutions[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 260-266. [51] KATO M, ICHIMURA M, ARAI E, et al. Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 7A): 4233-4236. [52] PAL P, KUMAR S, SINGH S K. Study of eutectic etching process for defects analysis in n type 4H SiC[J]. Defence Science Journal, 2020, 70(5): 515-519. [53] SCHMITT E, STRAUBINGER T, RASP M, et al. Polytype stability and defects in differently doped bulk SiC[J]. Journal of Crystal Growth, 2008, 310(5): 966-970. [54] ZHANG Z, STAHLBUSH R E, PIROUZ P, et al. Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer[J]. Journal of Electronic Materials, 2007, 36(5): 539-542. [55] AMELINCKX S, STRUMANE G, WEBB W W. Dislocations in silicon carbide[J]. Journal of Applied Physics, 1960, 31(8): 1359-1370. [56] GABOR T, STICKLER R. Chemical etching studies and transmission electron microscopy of silicon carbide[J]. Nature, 1963, 199(4898): 1054-1056. [57] BARTLETT R W, BARLOW M. Surface polarity and etching of beta-silicon carbide[J]. Journal of the Electrochemical Society, 1970, 117(11): 1436. [58] BRANDER R W, BOUGHEY A L. The etching of -silicon carbide[J]. British Journal of Applied Physics, 1967, 18(7): 905-1032. [59] MAHAJAN S, ROKADE M V, ALI S T, et al. Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal[J]. Materials Letters, 2013, 101: 72-75. [60] YANG X L, YU J Y, CHEN X F, et al. Basal plane bending of 4H-SiC single crystals grown by sublimation method with different seed attachment methods[J]. CrystEngComm, 2018, 20(43): 6957-6962. [61] BARTLETT R W, MARTIN G W. Imperfections in solution-grown β-silicon carbide crystals[J]. Journal of Applied Physics, 1968, 39(5): 2324-2329. [62] ZHANG Y, CHEN H, LIU D Z, et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching[J]. Applied Surface Science, 2020, 525: 146532. [63] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982. [64] TOKURA N, HARA K, TAKEUCHI Y, et al. Anisotropy in thermal oxidation of 6H-SiC[M]//NAKASHIMA S, MATSUNAMI H, YOSHIDA S, et al. Silicon Carbide and Related Materials 1995. 1996: 637-640. [65] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 8): 4661-4665. [66] MOKHOV E N, KAZAROVA O P, SOLTAMOV V A, et al. Influence of neutron irradiation on etching of SiC in KOH[J]. Technical Physics, 2017, 62(7): 1119-1121. [67] FUKUNAGA K, JUN S D, KIMOTO T. Anisotropic etching of single crystalline SiC using molten KOH for SiC bulk micromachining[C]//MOEMS-MEMS 2006 Micro and Nanofabrication. Proc SPIE 6109, Micromachining and Microfabrication Process Technology XI, San Jose, California, USA. 2006, 6109: 125-132. [68] SYVAJARVI M, YAKIMOVA R, JANZEN E. Anisotropic etching of SiC[J]. Journal of the Electrochemical Society, 2000, 147(9): 3519-3522. [69] SAKWE S A, JANG Y S, WELLMANN P J. Defect etching of non-polar and semi-polar faces in SiC[M]//Materials Science Forum. Stafa: Trans Tech Publications Ltd., 2007: 243-246. [70] SYVÄJÄRVI M, YAKIMOVA R, JANZéN E. Interfacial properties in liquid phase growth of SiC[J]. Journal of the Electrochemical Society, 1999, 146(4): 1565-1569. [71] SAKWE S A, MüLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526. [72] WEYHER J L, LAZAR S, BORYSIUK J, et al. Defect-selective etching of SiC[J]. Physica Status Solidi (a), 2005, 202(4): 578-583. [73] WU P, YOGANATHAN M, ZWIEBACK I. Defect evolution during growth of SiC crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1804-1809. [74] KATSUNO M, OHTANI N, AIGO T, et al. Structural properties of subgrain boundaries in bulk SiC crystals[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 256-262. [75] SICHE D, KLIMM D, HÖLZEL T, et al. Reproducible defect etching of SiC single crystals[J]. Journal of Crystal Growth, 2004, 270(1/2): 1-6. [76] 杨 莺,陈治明.湿法腐蚀工艺研究碳化硅晶体缺陷表面形貌[J].人工晶体学报,2008,37(3):634-638. YANG Y, CHEN Z M. Defect characterization of SiC by wet etching process[J]. Journal of Synthetic Crystals, 2008, 37(3): 634-638(in Chinese). [77] WU P, YOGANATHAN M, ZWIEBACK I, et al. Characterization of dislocations and micropipes in 4H n+ SiC substrates[J]. Materials Science Forum, 2008, 600/601/602/603: 333-336. [78] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246. [79] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29. [80] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 075502. [81] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Correlation between etch pits formed by molten KOH+Na2O2 etching and dislocation types in heavily doped n+-4H-SiC studied by X-ray topography[J]. Journal of Crystal Growth, 2013, 364: 7-10. [82] WAN J W, PARK S H, CHUNG G, et al. A comparative study of micropipe decoration and counting in conductive and semi-insulating silicon carbide wafers[J]. Journal of Electronic Materials, 2005, 34(10): 1342-1348. [83] YAO Y Z, ISHIKAWA Y, SATO K, et al. Dislocation revelation from (000(1)over-bar) carbon-face of 4H-SiC by using vaporized KOH at high temperature[J]. Applied Physics Express, 2012, 5(7): 075601. [84] WU P. Etching study of dislocations in heavily nitrogen doped SiC crystals[J]. Journal of Crystal Growth, 2010, 312(8): 1193-1198. [85] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [86] TAKAHASHI J, KANAYA M, FUJIWARA Y. Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane[J]. Journal of Crystal Growth, 1994, 135(1/2): 61-70. [87] 苗瑞霞.腐蚀参数对SiC单晶材料位错腐蚀效果的影响[J].科技创新导报,2013,10(25):87-89. MIAO R X. Effects of etching parameters on dislocation etching morphology of SiC single-crystal materials[J]. Science and Technology Innovation Herald, 2013, 10(25): 87-89(in Chinese). [88] 崔潆心,胡小波,徐现刚.物理气相传输法生长碳化硅单晶原生表面形貌研究[J].无机材料学报,2018,33(8):877-882. CUI Y X, HU X B, XU X G. As-grown surface morphologies of SiC single crystals grown by PVT method[J]. Journal of Inorganic Materials, 2018, 33(8): 877-882(in Chinese). |
[1] | 杨光, 刘晓双, 李佳君, 徐凌波, 崔灿, 皮孝东, 杨德仁, 王蓉. 4H碳化硅单晶中的位错[J]. 人工晶体学报, 2022, 51(9-10): 1673-1690. |
[2] | 韩跃斌, 蒲勇, 施建新. 化学气相沉积法碳化硅外延设备技术进展[J]. 人工晶体学报, 2022, 51(7): 1300-1308. |
[3] | 张宇飞, 王凯悦, 李俊林, 秦振兴, 田玉明. 基于光谱测试的纯净金刚石品质与缺陷研究[J]. 人工晶体学报, 2022, 51(5): 926-932. |
[4] | 许琳琳, 于海英, 张永锋. 多孔硅制备研究进展及其在锂离子电池方面的应用[J]. 人工晶体学报, 2022, 51(11): 1983-1993. |
[5] | 王国宾, 李辉, 盛达, 王文军, 陈小龙. 高温溶液法生长SiC单晶的研究进展[J]. 人工晶体学报, 2022, 51(1): 3-20. |
[6] | 侯红臣, 郑旭鹏, 楼永伟, 程伟强, 陈建军. 成型压力对SiCnf增韧SiC陶瓷基复合材料微观结构和性能的影响[J]. 人工晶体学报, 2021, 50(8): 1525-1533. |
[7] | 綦正超, 许庭翔, 刘学超, 王丁. 杂质和缺陷对SiC单晶导热性能的影响[J]. 人工晶体学报, 2021, 50(5): 816-824. |
[8] | 郭勇文, 黄晋强, 权纪亮. 大尺寸Nd,Ce∶YAG激光晶体的生长及缺陷研究[J]. 人工晶体学报, 2021, 50(2): 244-247. |
[9] | 王贺, 沈建辉, 闫广宇, 吴玉厚, 张慧森. 甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J]. 人工晶体学报, 2021, 50(11): 2067-2074. |
[10] | 王付雄, 谢婉谊. 自支撑氮化硅膜结构制备工艺优化[J]. 人工晶体学报, 2020, 49(12): 2358-2364. |
[11] | 柏松, 李士颜, 费晨曦, 刘强, 金晓行, 郝凤斌, 黄润华, 杨勇. 新一代SiC功率MOSFET器件研究进展[J]. 人工晶体学报, 2020, 49(11): 2122-2127. |
[12] | 石爱红;李源;艾文森. 碳化硅邻晶面外延生长机制的动力学蒙特卡罗模拟[J]. 人工晶体学报, 2020, 49(10): 1787-1793. |
[13] | 康杰;宋月鹏;孙为云;丁紫阳;李连荣;焦璨;雷腾飞. 可控化学腐蚀法制备碳化硅量子点及其表面修饰[J]. 人工晶体学报, 2020, 49(10): 1889-1895. |
[14] | 余健;林文松;徐彬桓;董曼茹. 绵白糖碳源反应烧结凝胶注模成型SiCw/B4C陶瓷组织与性能的研究[J]. 人工晶体学报, 2019, 48(9): 1679-1684. |
[15] | 任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||