欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2022, Vol. 51 ›› Issue (5): 941-947.

• 研究论文 • 上一篇    下一篇

大尺寸单晶金刚石磨抛一体化加工研究

温海浪1, 陆静1,2, 李晨1, 胡光球2   

  1. 1.华侨大学制造工程研究院,厦门 361021;
    2.苏州赛尔特新材料有限公司,苏州 215127
  • 收稿日期:2021-11-05 出版日期:2022-05-15 发布日期:2022-06-17
  • 通讯作者: 陆 静,博士,教授。E-mail:lujing26@hqu.edu.cn
  • 作者简介:温海浪(1996—),男,江西省人,硕士研究生。E-mail:hlwen@stu.hqu.edu.cn; 陆 静,博士,华侨大学制造工程研究院教授,博士生导师。现为脆性材料产品智能制造技术国家地方联合工程研究中心光电加工方向负责人,“脆性材料加工技术创新团队”科技部重点领域创新团队核心成员,厦门市光电材料加工重点实验室副主任,国际磨粒加工委员会(ICAT)青年委员,中国机械工程学会生产工程分会光整加工专业委员会理事,福建省机械工程学会标准委员会委员。研究方向为半导体晶圆衬底超精密加工、智能制造新型磨抛工具的研发。主持和参与包括国家自然科学基金青年项目、面上项目、重点项目等在内的40余项科研项目。研究成果发表SCI、EI收录学术论文95篇,其中作为第一作者、通信作者在Nano Letters、《机械工程学报》等业内顶级学术期刊发表论文40余篇。已授权国家发明专利8项,实用新型专利20项,PCT专利3项,美国专利2项,日本专利2项。获福建省自然科学优秀学术论文一等奖,福建省教学成果奖一等奖。入选福建省高校杰出青年科研人才,福建省高校新世纪优秀人才,姑苏创新创业领军人才,上银优秀机械博士论文指导老师,中国“互联网+”大学生创新创业大赛优秀创新创业导师。
  • 基金资助:
    国家自然科学基金(51975222,51835004);福建省杰出青年基金(2021J06027)

Integrated Processing of Grinding and Polishing for Large-Size Single Crystal Diamond

WEN Hailang1, LU jing1,2, LI Chen1, HU Guangqiu2   

  1. 1. Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China;
    2. Suzhou Sail Advanced Material Co., Ltd., Suzhou 215127, China
  • Received:2021-11-05 Online:2022-05-15 Published:2022-06-17

摘要: 金刚石因其优异的物理性质被视为下一代半导体材料,然而其极高的硬度、脆性和耐腐蚀性导致其加工困难,尤其是对于大尺寸的化学气相沉积(chemical vapor deposition, CVD)单晶金刚石(SCD)晶片而言,目前还缺乏一种高效、低成本的磨抛加工方法。本文提出一种基于工件自旋转的同心双砂轮磨抛一体化加工技术,在一次装夹中,先采用金刚石磨料的陶瓷内圈砂轮磨削单晶金刚石晶片表面,将单晶金刚石表面迅速平坦化,后采用金刚石与CuO混合磨料的外圈溶胶-凝胶(sol-gel,SG)抛光轮抛光单晶金刚石晶片表面,使其在较短时间内完成从原始生长面(Sa约46 nm)到原子级表面精度(Sa<0.3 nm)的加工。磨削加工中,硬质金刚石磨料的陶瓷砂轮高速划擦金刚石晶片表面,在强机械作用下获得较大的材料去除以及纳米级的光滑单晶金刚石表面,同时引起进一步的表面非晶化;SG抛光加工中,硬质金刚石磨料高速划擦单晶金刚石表面形成高温高压环境,进一步诱导CuO粉末与单晶金刚石表面的非晶碳发生氧化还原反应,实现反应抛光。磨抛一体化的加工技术为晶圆级的单晶、多晶金刚石的工业化生产提供借鉴。

关键词: CVD单晶金刚石, 磨抛一体化, 反应抛光, 粗糙度, 陶瓷砂轮, SG轮

Abstract: Due to its excellent physical properties, diamond is regarded as a next-generation semiconductor material. However, its extremely high hardness, brittleness, and corrosion resistance cause the diamond difficult to process, especially for large-size chemical vapor deposition (CVD) single crystal diamonds (SCD). Currently, researchers have not explored an efficient and low-cost method for ultra-precision processing diamond wafers. Based on the rotary infeed surface grinding, integrated processing technology of grinding and polishing by the concentric double grinding wheel was proposed in this paper. In one clamping, the SCD surface is flattened by the inner ring ceramic grinding wheel that the abrasive is diamond, and then the surface after grinding is polished by sol-gel (SG) polishing wheel that the abrasives are diamond mixed with CuO. In the processing of grinding and polishing integration, the surface roughness of SCD can be reduced from about 46 nm to less than 0.3 nm in a short time. In the grinding, the ceramic grinding wheel with diamond abrasive scratches the SCD surface at high speed. The strong mechanical action causes the large material removal, obtains nano-level smooth surface of SCD, and causes the surface amorphization. In the SG polishing, the diamond abrasive scratches the SCD surface at high speed to form a high-temperature and high-pressure environment, which further induces the oxidation-reduction reaction between the CuO powder and the amorphous carbon for realizing reactive polishing. The integrated processing technology of grinding and polishing provides a reference for the industrial production of SCD wafers and polycrystalline diamond (PCD) wafers in the future.

Key words: CVD single crystal diamond, integration technology of grinding and polishing, reactive polishing, roughness, ceramic grinding wheel, SG wheel

中图分类号: