[1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062. [2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. [3] JOHN S, AKÖZBEK N. Nonlinear optical solitary waves in a photonic band gap[J]. Physical Review Letters, 1993, 71(8): 1168-1171. [4] MILLS D L, TRULLINGER S E. Gap solitons in nonlinear periodic structures[J]. Physical Review B, Condensed Matter, 1987, 36(2): 947-952. [5] JOHN S, QUANG T. Spontaneous emission near the edge of a photonic band gap[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1994, 50(2): 1764-1769. [6] JOHN S, QUANG T. Localization of superradiance near a photonic band gap[J]. Physical Review Letters, 1995, 74(17): 3419-3422. [7] MCCALL S L, PLATZMAN P M, DALICHAOUCH R, et al. Microwave propagation in two-dimensional dielectric lattices[J]. Physical Review Letters, 1991, 67(15): 2017-2020. [8] YABLONOVITCH E, GMITTER T J, MEADE R D, et al. Donor and acceptor modes in photonic band structure[J]. Physical Review Letters, 1991, 67(24): 3380-3383. [9] SMITH D R, MCCALL S L, PLATZMAN P M, et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 1993, 10(2): 314. [10] AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947. [11] MEKIS A, CHEN J C, et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 1996, 77(18): 3787-3790. [12] HU J, MENYUK C R, SHAW L B, et al. A mid-IR source with increased bandwidth using tapered As2S3 chalcogenide photonic crystal fibers[J]. Optics Communications, 2013, 293: 116-118. [13] KING B, RUMINSKI A, SNYDER J, et al. Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon[J]. Advanced Materials, 2007, 19(24): 4530-4534. [14] NOTOMI M, YAMADA K, SHINYA A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Physical Review Letters, 2001, 87(25): 253902. [15] CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides[J]. Nature Photonics, 2009, 3(4): 206-210. [16] ALTUG H, ENGLUND D, VUCˇKOVICJ. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488. [17] PARK H G, KIM S H, KWON S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science, 2004, 305(5689): 1444-1447. [18] ELLIS B, MAYER M A, SHAMBAT G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[J]. Nature Photonics, 2011, 5(5): 297-300. [19] MEADE R D, BROMMER K D, RAPPE A M, et al. Existence of a photonic band gap in two dimensions[J]. Applied Physics Letters, 1992, 61(4): 495-497. [20] FENG X P, ARAKAWA Y. Defect modes in two-dimensional triangular photonic crystals[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 2A): L120-L123. [21] ABBASIAN SHOJAEI I, SOLTANI VALA A, SHOJAEI S, et al. Localized defect modes in finite magnetic two-dimensional photonic crystals[J]. The European Physical Journal B, 2011, 81(1): 63-68. [22] VILLENEUVE P R, FAN S, JOANNOPOULOS J D. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency[J]. Physical Review B, Condensed Matter, 1996, 54(11): 7837-7842. [23] SIGALAS M, SOUKOULIS C M, ECONOMOU E N, et al. Photonic band gaps and defects in two dimensions: studies of the transmission coefficient[J]. Physical Review B, Condensed Matter, 1993, 48(19): 14121-14126. [24] SIGALAS M M, SOUKOULIS C M, CHAN C T, et al. Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials[J]. Physical Review B, Condensed Matter, 1994, 49(16): 11080-11087. [25] WANG L Q, ZHENG H, LU X, et al. A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its application in phononic crystals[J]. Journal of Computational Physics, 2019, 393: 117-138. [26] WANG L Q, ZHENG H, ZHAO M L, et al. Petrov-Galerkin method for the band structure computation of anisotropic and piezoelectric phononic crystals[J]. Applied Mathematical Modelling, 2021, 89: 1090-1105. [27] WANG L Q, ZHAO M L, ZHANG Y F, et al. A finite element method for the band structure computation of photonic crystals with complex scatterer geometry[J]. Computer Physics Communications, 2021, 263: 107869. [28] 郑 渝,徐群和,李书平,等.具有缺陷态的二维光子晶体通讯波长滤波器的结构优化设计[J].福州大学学报(自然科学版),2007,35(S1):19-23. ZHENG Y, XU Q H, LI S P, et al. Structural design of communication filters using two-dimensional photonic crystals with defect modes[J]. Journal of Fuzhou University (Natural Science Edition), 2007, 35(S1): 19-23(in Chinese). [29] ALAGAPPAN G, SUN X W, SHUM P, et al. Symmetry properties of two-dimensional anisotropic photonic crystals[J]. Journal of the Optical Society of America A, 2006, 23(8): 2002-2013. |