[1] DAI X, ZHENG Q, ZHANG X, et al. High performance photoresponse of transparent β-Ga2O3 film prepared by polymer-assisted deposition[J]. Materials Letters, 2021, 284: 128912. [2] LI X, LU H L, MA H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition[J]. Current Applied Physics, 2019, 19(2): 72-81. [3] KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. [4] BABAN C, TOYODA Y, OGITA M. Oxygen sensing at high temperatures using Ga2O3 films[J]. Thin Solid Films, 2005, 484(1/2): 369-373. [5] FENG Z Q, CAI Y C, LI Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application[J]. Applied Physics Letters, 2020, 116(24): 243503. [6] WANG Y G, GONG H H, LV Y J, et al. 2.41 kV vertical p-NiO/n-Ga2O3 heterojunction diodes with a record Baliga's figure-of-merit of 5.18 GW/cm2[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 3743-3746. [7] HOU X H, ZHAO X L, ZHANG Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering[J]. Advanced Materials, 2022, 34(1): e2106923. [8] JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226. [9] WU Z Y, JIANG Z X, MA C C, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films[J]. Materials Today Physics, 2021, 17: 100356. [10] OTSUKA F, MIYAMOTO H, TAKATSUKA A, et al. Large-size (1.7×1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio[J]. Applied Physics Express, 2022, 15(1): 016501. [11] GOTO K, KONISHI K, MURAKAMI H, et al. Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties[J]. Thin Solid Films, 2018, 666: 182-184. [12] ANTORO I D, ITOH S, YAMADA S, et al. Influence of rapid thermal annealing at varied temperatures on conductivity activation energy and structural properties of Si-doped β-Ga2O3 film grown by pulsed laser deposition[J]. Ceramics International, 2019, 45(1): 747-751. [13] ZHOU H T, CONG L J, MA J G, et al. High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film[J]. Journal of Alloys and Compounds, 2020, 847: 156536. [14] OU S L, WUU D S, FU Y C, et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition[J]. Materials Chemistry and Physics, 2012, 133(2/3): 700-705. [15] OHYA Y, OKANO J, KASUYA Y, et al. Fabrication of Ga2O3 thin films by aqueous solution deposition[J]. Journal of the Ceramic Society of Japan, 2009, 117(1369): 973-977. [16] OGITA M, SAIKA N, NAKANISHI Y, et al. Ga2O3 thin films for high-temperature gas sensors[J]. Applied Surface Science, 1999, 142(1/2/3/4): 188-191. [17] VOGT P, BIERWAGEN O. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: incorporation of Ga vs. Ga2O desorption[J]. Applied Physics Letters, 2016, 108(7): 072101. [18] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507. [19] SHI F F, HAN J, XING Y H, et al. Annealing effects on properties of Ga2O3 films deposited by plasma-enhanced atomic layer deposition[J]. Materials Letters, 2019, 237: 105-108. [20] ZHANG G X, ZHANG H M, WANG R F, et al. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7307-7318. [21] ZHANG T, LI Y F, CHENG Q, et al. Influence of O2 pulse on the β-Ga2O3 films deposited by pulsed MOCVD[J]. Ceramics International, 2022, 48(6): 8268-8275. |