[1] AHMADI E, OSHIMA Y. Materials issues and devices of α-and β-Ga2O3[J]. Journal of Applied Physics, 2019, 126(16): 160901. [2] GUO D, GUO Q, CHEN Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157. [3] YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 2007, 19(34): 346211. [4] HE H Y, ORLANDO R, BLANCO M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3in its monoclinic and hexagonal phases[J]. Physical Review B, 2006, 74(19): 195123. [5] CHEN J W, TANG H L, LI Z W, et al. Highly sensitive X-ray detector based on a β-Ga2O3∶Fe single crystal[J]. Optics Express, 2021, 29(15): 23292-23299. [6] SHI J J, LIANG H W, XIA X C, et al. Band alignment analysis of CuGaO2/β-Ga2O3 heterojunction and application to deep-UV photodetector[J]. Applied Surface Science, 2021, 569: 151010. [7] OSHIMA Y, KAWARA K, OSHIMA T, et al. Phase-controlled epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2020, 59(2): 025512. [8] GUO D Y, ZHAO X L, ZHI Y S, et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films[J]. Materials Letters, 2016, 164: 364-367. [9] OSHIMA T, MATSUYAMA K, YOSHIMATSU K, et al. Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition[J]. Journal of Crystal Growth, 2015, 421: 23-26. [10] WANG C, LI S W, FAN W H, et al. Structural, optical and morphological evolution of Ga2O3/Al2O3 (0001) films grown at various temperatures by pulsed laser deposition[J]. Ceramics International, 2021, 47(21): 29748-29757. [11] WANG D P, LI J N, JIAO A N, et al. Atomically control of surface morphology in Ga2O3 epi-layers with high doping activation ratio[J]. Journal of Alloys and Compounds, 2021, 855: 157296. [12] CAI Y C, ZHANG K, FENG Q, et al. Tin-assisted growth of ε-Ga2O3 film and the fabrication of photodetectors on sapphire substrate by PLD[J]. Optical Materials Express, 2018, 8(11): 3506. [13] MAUZE A, ZHANG Y W, ITOH T, et al. Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 2020, 117(22): 222102. [14] HUANG Y Q, GAO A, GUO D Y, et al. Fe doping-stabilized γ-Ga2O3 thin films with a high room temperature saturation magnetic moment[J]. Journal of Materials Chemistry C, 2020, 8(2): 536-542. [15] OSHIMA T, OKUNO T, FUJITA S. Ga2O3Thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220. [16] MUKHOPADHYAY P, SCHOENFELD W V. Tin gallium oxide solar-blind photodetectors on sapphire grown by molecular beam epitaxy[J]. Applied Optics, 2019, 58(13): D22-D27. [17] 钟天晟,于舜杰,赵晓龙,等.基于MOCVD外延超薄氧化镓薄膜的高性能日盲和X射线探测器(特邀)[J].光子学报,2021,50(10):1004001. ZHONG T S, YU S J, ZHAO X L, et al. High-performance solar-blind and X-ray detector based on ultra-thin gallium oxide film grown by MOCVD(invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1004001(in Chinese). [18] ALEMA F, ZHANG Y W, OSINSKY A, et al. Low temperature electron mobility exceeding 104 cm2/Vs in MOCVD grown β-Ga2O3[J]. APL Materials, 2019, 7(12): 121110. [19] RAZEGHI M, LEE J, GAUTAM L, et al. Microstrip array ring FETs with 2D p-Ga2O3 channels grown by MOCVD[J]. Photonics, 2021, 8(12): 578. [20] XU Y, ZHANG C F, YAN P R, et al. Β-Ga2O3 epitaxial growth on Fe-GaN template by non-vacuum mist CVD and its application in Schottky barrier diodes[J]. AIP Advances, 2021, 11(7): 075312. [21] YANG D, KIM B, LEE T H, et al. Selective area growth of single-crystalline alpha-gallium oxide on a sapphire nanomembrane by mist chemical vapor deposition[J]. ACS Applied Electronic Materials, 2021, 3(10): 4328-4336. [22] TAKANE H, KANEKO K, OTA Y, et al. Initial nucleation scheme of Ga2O3 on (0001) sapphire by mist CVD for the growth of α-phase[J]. Japanese Journal of Applied Physics, 2021, 60(5): 055501. [23] 焦 典. Mist-CVD法氧化镓薄膜制备及其特性研究[D].西安:西安电子科技大学,2020. JIAO D. Preparation and characterization of gallium oxide thin films by mist CVD method[D]. Xi’an: Xi’an University of Electronic Science and technology, 2020(in Chinese). [24] KIM K H, HA M T, KWON Y J, et al. Growth of 2-inch α-Ga2O3 epilayers via rear-flow-controlled mist chemical vapor deposition[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3165-Q3170. |