人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1703-1721.
赵清华1,2, 郑丹1, 陈鹏1, 王涛1,2, 介万奇1
收稿日期:
2022-07-27
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
王 涛,博士,教授。E-mail:taowang@nwpu.edu.cn作者简介:
赵清华(1991—),男,安徽省人,博士,教授。E-mail:qinghua_zhao@ nwpu.edu.cn。赵清华,博士,教授,博士生导师。工信部国家级青年人才。2013年在西北工业大学材料科学与工程专业获得学士学位,2016年在西北工业大学材料学专业获得硕士学位,2020年入职西北工业大学任教授。主要从事集成电路-光电子信息-光电子技术相关的新型半导体材料及其光电子器件的设计、构筑及其性能优化研究。基金资助:
ZHAO Qinghua1,2, ZHENG Dan1, CHEN Peng1, WANG Tao1,2, JIE Wanqi1
Received:
2022-07-27
Online:
2022-10-15
Published:
2022-11-02
摘要: 自2004年发现石墨烯以来,二维材料以其丰富的带隙结构、独特的光电特性和无悬挂键的范德瓦耳斯表面等,极大地拓宽了半导体电子、光电子器件的设计维度。其中二维硒化铟材料成为最具竞争力的未来高迁移率光电子器件用候选材料,被诺贝尔奖获得者Andre Geim认为是“硅和石墨烯的‘黄金分割点’”。但人们对二维硒化铟材料的研究仅有不到十年的时间,对其制备及应用的认识仍然不足。本文综述了二维硒化铟材料及其光电器件的研究现状。另外,考虑到目前绝大多数二维硒化铟材料的研究是基于块状单晶体材料的机械剥离开始的,因此本文首先回顾了硒化铟晶体结构的认识及其制备方法的发展历程,在此基础上综述了二维硒化铟材料制备及其性能表征的前沿研究结果,探讨了器件结构、材料制备方法等因素对二维硒化铟场效应晶体管和光探测器电学输运特性的影响,最后分析了未来硒化铟材料及器件应用面临的机遇与挑战。
中图分类号:
赵清华, 郑丹, 陈鹏, 王涛, 介万奇. 硒化铟材料的发展及其光电器件应用[J]. 人工晶体学报, 2022, 51(9-10): 1703-1721.
ZHAO Qinghua, ZHENG Dan, CHEN Peng, WANG Tao, JIE Wanqi. Research Progress on Indium Selenide Crystals and Optoelectronic Devices[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1703-1721.
[1] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. [2] 李兴鳌,王博琳,刘忠儒.石墨烯的制备、表征与特性研究进展[J].材料导报,2012,26(1):61-65. LI X A, WANG B L, LIU Z R. Research progress in preparation, characterization and properties of graphene[J]. Materials Review, 2012, 26(1): 61-65(in Chinese). [3] CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1: 16052. [4] 徐春燕,南海燕,肖少庆,等.基于二维半导体材料光电器件的研究进展[J].电子与封装,2021,21(3):71-85. XU C Y, NAN H Y, XIAO S Q, et al. Research progress of photoelectric devices based on 2D semiconductor materials[J]. Electronics & Packaging, 2021, 21(3): 71-85(in Chinese). [5] DAI M J, GAO C F, NIE Q F, et al. Properties, synthesis, and device applications of 2D layered InSe[J]. Advanced Materials Technologies, 2022: 2200321. [6] MANCHESTER U O. New ultra-thin semiconductor could extend life of Moore's law[J]. Phys Org, 2016. [7] SCHUBERT K, DÖRRE E, GÜNZEL E. Kristallchemische ergebnisse an phasen aus B-elementen[J]. Naturwissenschaften, 1954, 41(19): 448. [8] SUGAIKE S. Synthesis, crystal lattices and some electrical properties of indium tellurides and selenides[J]. Mineralogical Journal, 1957, 2(2): 63-77. [9] SEMILETOV S. Electronografic determination of the InSe structure[J]. Kristallografiya, 1958, 3 (3): 288-292. [10] RIGOULT J, RIMSKY A, KUHN A. Refinement of the 3R γ-indium monoselenide structure type[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1980, 36(4): 916-918. [11] IKARI T, SHIGETOMI S, HASHIMOTO K. Crystal structure and Raman spectra of InSe[J]. Physica Status Solidi (b), 1982, 111(2): 477-481. [12] HAN G, CHEN Z G, DRENNAN J, et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances[J]. Small, 2014, 10(14): 2747-2765. [13] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272. [14] GÜRBULAK B, ŞATA M, DOGAN S, et al. Structural characterizations and optical properties of InSe and InSe∶Ag semiconductors grown by Bridgman/Stockbarger technique[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64: 106-111. [15] CHEVY A. Improvement of growth parameters for Bridgman-grown InSe crystals[J]. Journal of Crystal Growth, 1984, 67(1): 119-124. [16] DE BLASI C, MICOCCI G, MONGELLI S, et al. Large InSe single crystals grown from stoichiometric and non-stoichiometric melts[J]. Journal of Crystal Growth, 1982, 57(3): 482-486. [17] ISHII T. High quality single crystal growth of layered InSe Semiconductor by Bridgman technique[J]. Journal of Crystal Growth, 1988, 89(4): 459-462. [18] CHEVY A, KUHN A, MARTIN M S. Large InSe monocrystals grown from a non-stoichiometric melt[J]. Journal of Crystal Growth, 1977, 38(1): 118-122. [19] TRIBOULET R, LEVY-CLEMENT C, THEYS B, et al. Growth of InSe single crystals by the travelling heater method[J]. Journal of Crystal Growth, 1986, 79(1/2/3): 984-989. [20] SUN M, WANG W, ZHAO Q H, et al. ε-InSe single crystals grown by a horizontal gradient freeze method[J]. CrystEngComm, 2020, 22: 7864-7869. [21] SREEDHAR A K, SHARMA B L, PUROHIT R K. Preparation and electrical properties of InSe[J]. Radiation Effects, 1970, 4(1): 121-122. [22] MUDD G W, SVATEK S A, REN T H, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Advanced Materials, 2013, 25(40): 5714-5718. [23] PETRONI E, LAGO E, BELLANI S, et al. Liquid-phase exfoliated indium-selenide flakes and their application in hydrogen evolution reaction[J]. Small, 2018, 14(26): e1800749. [24] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered inse nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. [25] YANG Z B, JIE W J, MAK C H, et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse[J]. ACS Nano, 2017, 11(4): 4225-4236. [26] ZHOU J D, SHI J, ZENG Q S, et al. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation[J]. 2D Materials, 2018, 5(2): 025019. [27] WASALA M, SIRIKUMARA H I, RAJ SAPKOTA Y, et al. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds[J]. Journal of Materials Chemistry C, 2017, 5(43): 11214-11225. [28] ZHAO Q H, PUEBLA S, ZHANG W L, et al. Thickness identification of thin InSe by optical microscopy methods[J]. Advanced Photonics Research, 2020, 1(2): 2000025. [29] FENG W, ZHENG W, CAO W W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Advanced Materials, 2014, 26(38): 6587-6593. [30] MUDD G W, MOLAS M R, CHEN X, et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals[J]. Scientific Reports, 2016, 6: 39619. [31] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. [32] TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319. [33] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475. [34] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. [35] RADISAVLJEVIC B, KIS A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820. [36] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2 transistors Be? [J]. Nano Letters, 2011, 11(9): 3768-3773. [37] ZHANG Y, CHANG T R, ZHOU B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115. [38] LI S L, TSUKAGOSHI K, ORGIU E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151. [39] LARENTIS S, FALLAHAZAD B, TUTUC E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers[J]. Applied Physics Letters, 2012, 101(22): 223104. [40] GUSAKOVA J, WANG X L, SHIAU L L, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method)[J]. Physica Status Solidi (a), 2017, 214(12): 1700218. [41] FANG H, CHUANG S, CHANG T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Letters, 2012, 12(7): 3788-3792. [42] CHUANG H J, CHAMLAGAIN B, KOEHLER M, et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors[J]. Nano Letters, 2016, 16(3): 1896-1902. [43] ZHAO W J, GHORANNEVIS Z, CHU L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2013, 7(1): 791-797. [44] BAUGHER B W H, CHURCHILL H O H, YANG Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262-267. [45] JIN Z H, LI X D, MULLEN J T, et al. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides[J]. Physical Review B, 2014, 90(4): 045422. [46] TONGAY S, FAN W, KANG J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Letters, 2014, 14(6): 3185-3190. [47] ELÍAS A L, PEREA-LÓPEZ N, CASTRO-BELTRÁN A, et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242. [48] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181. [49] BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227. [50] LI M J, LIN C Y, YANG S H, et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping[J]. Advanced Materials, 2018, 30(44): e1803690. [51] CHANG H C, TU C L, LIN K I, et al. Synthesis of large-area InSe monolayers by chemical vapor deposition[J]. Small, 2018, 14(39): 1802351. [52] ZHAO Q H, WANG W, CARRASCOSO-PLANA F, et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors[J]. Materials Horizons, 2020, 7(1): 252-262. [53] FENG W, ZHENG W, CHEN X S, et al. Gate modulation of threshold voltage instability in multilayer InSe field effect transistors[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26691-26695. [54] SUCHARITAKUL S, GOBLE N J, KUMAR U R, et al. Intrinsic electron mobility exceeding 103 cm2/(V·s) in multilayer InSe FETs[J]. Nano Letters, 2015, 15(6): 3815-3819. [55] WELLS S A, HENNING A, GISH J T, et al. Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation[J]. Nano Letters, 2018, 18(12): 7876-7882. [56] FENG W, WU J B, LI X L, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry C, 2015, 3(27): 7022-7028. [57] ZENG J W, LIANG S J, GAO A Y, et al. Gate-tunable weak antilocalization in a few-layer InSe[J]. Physical Review B, 2018, 98(12): 125414. [58] JIANG J F, LI J X, LI Y T, et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing[J].Npj 2D Materials and Applications, 2019, 3(1): 1-8. [59] FENG W, QIN F L, YU M M, et al. Synthesis of superlattice InSe nanosheets with enhanced electronic and optoelectronic performance[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18511-18516. [60] WANG Y H, GAO J W, WEI B, et al. Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic applications[J]. Nanoscale, 2020, 12(35): 18356-18362. [61] BERGERON H, GUINEY L M, BECK M E, et al. Large-area optoelectronic-grade InSe thin films via controlled phase evolution[J]. Applied Physics Reviews, 2020, 7(4): 041402. [62] HAO Q Y, LIU J D, WANG G, et al. Surface-modified ultrathin InSe nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics[J]. ACS Nano, 2020, 14(9): 11373-11382. [63] LIANGMEI W, JINAN S, ZHANG Z, et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics[J]. Nano Research, 2020(4): 1127-1132. [64] ZHANG S C, QIU Y F, YANG H H, et al. The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(20): 6701-6709. [65] CHENG C Y, PAI W L, CHEN Y H, et al. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors[J]. Nano Letters, 2022, 22(6): 2270-2276. [66] FENG W, ZHOU X, TIAN W Q, et al. Performance improvement of multilayer InSe transistors with optimized metal contacts[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(5): 3653-3658. [67] YANG H W, HSIEH H F, CHEN R S, et al. Ultraefficient ultraviolet and visible light sensing and ohmic contacts in high-mobility InSe nanoflake photodetectors fabricated by the focused ion beam technique[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5740-5749. [68] ARORA H, JUNG Y, VENANZI T, et al. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43480-43487. [69] HO P H, CHANG Y R, CHU Y C, et al. High-mobility InSe transistors: the role of surface oxides[J]. ACS Nano, 2017, 11(7): 7362-7370. [70] OSMAN M, HUANG Y M, FENG W, et al. Modulation of opto-electronic properties of InSe thin layers via phase transformation[J]. RSC Advances, 2016, 6(74): 70452-70459. [71] GUO Z, CAO R, WANG H, et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe[J]. National Science Review, 2022, 9(5): nwab098. [72] WANG Y, WANG H L, GALI S M, et al. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103353. [73] HUANG Y T, CHEN Y H, HO Y J, et al. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33450-33456. [74] CHEN Y H, CHENG C Y, CHEN S Y, et al. Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors[J]. Npj 2D Materials and Applications, 2019, 3: 49. [75] HU S Q, LUO X G, XU J P, et al. Reconfigurable InSe electronics with van der waals integration[J]. Advanced Electronic Materials, 2022, 8(5): 2101176. [76] KANG J, WELLS S A, SANGWAN V K, et al. Solution-based processing of optoelectronically active indium selenide[J]. Advanced Materials, 2018, 30(38): e1802990. [77] CHNG S S, ZHU M M, WU J, et al. Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(13): 4421-4431. [78] CHANG Y R, HO P H, WEN C Y, et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector[J]. ACS Photonics, 2017, 4(11): 2930-2936. [79] TSAI T H, YANG F S, HO P H, et al. High-mobility InSe transistors: the nature of charge transport[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35969-35976. [80] SINGH P, BAEK S, YOO H H, et al. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications[J]. ACS Nano, 2022: 2022 Mar 2. [81] WANG Y M, ZHANG J W, LIANG G D, et al. Schottky-barrier thin-film transistors based on HfO2-capped InSe[J]. Applied Physics Letters, 2019, 115(3): 033502. [82] JIANG J F, MENG F Q, CHENG Q L, et al. Low lattice mismatch InSe-Se vertical van der waals heterostructure for high-performance transistors via strong Fermi-level depinning[J]. Small Methods, 2020, 4(8): 2070032. [83] WANG F L, JIANG J F, LIU Q L, et al. Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect[J]. Nano Energy, 2020, 70: 104457. [84] LIU L, WU L M, WANG A W, et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity[J]. Nano Letters, 2020, 20(9): 6666-6673. [85] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272. [86] TAMALAMPUDI S R, LU Y Y, KUMAR U R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response[J]. Nano Letters, 2014, 14(5): 2800-2806. [87] LUO W G, CAO Y F, HU P G, et al. Gate tuning of high-performance InSe-based photodetectors using graphene electrodes[J]. Advanced Optical Materials, 2015, 3(10): 1418-1423. [88] LEI S D, WEN F F, GE L H, et al. An atomically layered InSe avalanche photodetector[J]. Nano Letters, 2015, 15(5): 3048-3055. [89] ZHANG Z Y, CHENG B, LIM J, et al. Approaching intrinsic threshold breakdown voltage and ultra-high gain in graphite/InSe Schottky photodetector[J]. Advanced Materials, 2022: 2206196. [90] MUDD G W, SVATEK S A, HAGUE L, et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures[J]. Advanced Materials, 2015, 27(25): 3760-3766. [91] CHEN Z S, BISCARAS J, SHUKLA A. A high performance graphene/few-layer InSe photo-detector[J]. Nanoscale, 2015, 7(14): 5981-5986. [92] DAI M J, CHEN H Y, FENG R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction[J]. ACS Nano, 2018, 12(8): 8739-8747. [93] ULAGANATHAN R K, YADAV K, SANKAR R, et al. Hybrid InSe nanosheets and MoS2 quantum dots for high-performance broadband photodetectors and photovoltaic cells[J]. Advanced Materials Interfaces, 2019, 6(2): 1801336. [94] CURRELI N, SERRI M, SPIRITO D, et al. Liquid phase exfoliated indium selenide based highly sensitive photodetectors[J]. Advanced Functional Materials, 2020, 30 (13): 1908427. [95] HU S Q, ZHANG Q, LUO X G, et al. Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity[J]. Nanoscale, 2020, 12(6): 4094-4100. [96] WU C Y, CAO K J, LE Y X, et al. Spectral engineering of InSe nanobelts for full-color imaging by tailoring the thickness[J]. The Journal of Physical Chemistry Letters, 2022, 13(12): 2668-2673. [97] JANG H, SEOK Y, CHOI Y, et al. High-performance near-infrared photodetectors based on surface-doped InSe[J]. Advanced Functional Materials, 2021, 31(3): 2006788. [98] DAI M J, CHEN H Y, WANG F K, et al. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors[J]. ACS Nano, 2019, 13(6): 7291-7299. [99] QIU H, XU T, WANG Z L, et al. Hopping transport through defect-induced localized states in molybdenum disulphide[J]. Nature Communications, 2013, 4: 2642. [100] YU Z H, PAN Y M, SHEN Y T, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nature Communications, 2014, 5: 5290. [101] XIAO K J, CARVALHO A, CASTRO NETO A H. Defects and oxidation resilience in InSe[J]. Physical Review B, 2017, 96(5): 054112. [102] PHAM V T, FANG T H. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers[J]. Scientific Reports, 2020, 10: 15082. [103] YANG X, LIU X, QU L, et al. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping[J]. ACS Nano, 2022, 16(5): 8440-8448. |
[1] | 黄田, 马赛, 刘宵宇, 黎迎, 武红, 徐永兵, 魏陆军, 李峰, 普勇. 具有大磁各向异性和高居里温度的二维笼目磁性材料Fe3As[J]. 人工晶体学报, 2023, 52(8): 1413-1421. |
[2] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
[3] | 王萌萌, 尹延如, 丁晓圆, 张晶, 付秀伟, 贾志泰, 陶绪堂. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展[J]. 人工晶体学报, 2023, 52(7): 1169-1194. |
[4] | 刘小虎, 李坚富, 朱昭捷, 涂朝阳, 王阁阳, 杨金芳, 朱江峰, 王燕. Yb∶CaGdAlO4晶体及其超快激光技术研究进展[J]. 人工晶体学报, 2023, 52(7): 1195-1207. |
[5] | 孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云. Yb,Ho∶GdScO3晶体生长及光谱性能分析[J]. 人工晶体学报, 2023, 52(7): 1243-1249. |
[6] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[7] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[8] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
[9] | 郭俊, 刘坚, 陈鹏, 宋青松, 张志恒, 徐晓东, 徐军. Nd∶CaYAlO4单晶光纤的生长及光谱性能研究[J]. 人工晶体学报, 2023, 52(7): 1345-1351. |
[10] | 陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931-944. |
[11] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[12] | 王高凯, 张兴旺. 六方氮化硼外延生长研究进展[J]. 人工晶体学报, 2023, 52(5): 825-841. |
[13] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[14] | 张鑫, 沈俊, 湛立, 崔恒清, 葛炳辉, 武传强. 枝晶WS2/单层WS2薄膜的CVD可控制备与表征[J]. 人工晶体学报, 2023, 52(5): 909-917. |
[15] | 格畅, 周国香, 秦旭晨, 王广, 阎童童, 李佳. 二维Janus型铬硫化物电子和压电性质研究[J]. 人工晶体学报, 2023, 52(4): 613-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||