[1] DONATO N, ROUGER N, PERNOT J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D, 2020, 53: 093001. [2] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672. [3] TATSUMI N, TAMASAKU K, ITO T, et al. Behavior of crystal defects in synthetic type-Ⅱa single-crystalline diamond at high temperatures under normal pressure[J]. Journal of Crystal Growth, 2017, 458: 27-30. [4] 吴 改,陈美华.种晶类型对微波等离子体CVD法合成单晶体金刚石生长质量的影响[J].新型炭材料,2018,33(1):88-96. WU G, CHEN M H. The influence of seed crystals on the quality of single-crystal diamond produced by a microwave plasma CVD method[J]. New Carbon Materials, 2018, 33(1): 88-96(in Chinese). [5] TALLAIRE A, MILLE V, BRINZA O, et al. Thick CVD diamond films grown on high-quality type Ⅱa HPHT diamond substrates from New Diamond Technology[J]. Diamond and Related Materials, 2017, 77: 146-152. [6] LEW C T K, DONTSCHUK N, BROADWAY D A, et al. Investigation of charge carrier trapping in H-terminated diamond devices[J]. Applied Physics Letters, 2020, 117(14): 143507. [7] KLEIN O, MAYR M, FISCHER M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films[J]. Diamond and Related Materials, 2016, 65: 53-58. [8] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304. [9] BOUSSADI A, TALLAIRE A, KASU M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector[J]. Diamond and Related Materials, 2018, 83: 162-169. [10] HAN X T, DUAN P, PENG Y, et al. Basal plane bending of homoepitaxial MPCVD single-crystal diamond[J]. Materials, 2020, 13(20): 4510. [11] TALLAIRE A, OUISSE T, LANTREIBECQ A, et al. Identification of dislocations in synthetic chemically vapor deposited diamond single crystals[J]. Crystal Growth & Design, 2016, 16(5): 2741-2746. [12] BOGDAN G, NESLÁDEK M, D'HAEN J, et al. Growth and characterization of near-atomically flat, thick homoepitaxial CVD diamond films[J]. Physica Status Solidi (a), 2005, 202(11): 2066-2072. [13] 李一村,舒国阳,刘 刚,等.MPCVD单晶金刚石初始及断续生长界面的表征与分析[J].人工晶体学报,2020,49(10):1765-1769. LI Y C, SHU G Y, LIU G, et al. Characterization and analysis of the initial and intermittent growth interfaces of MPCVD single crystal diamond[J]. Journal of Synthetic Crystals, 2020, 49(10): 1765-1769(in Chinese). [14] HEI L F, ZHAO Y, WEI J J, et al. Interface features of the HPHT Ⅰb substrate and homoepitaxial CVD diamond layer[J]. Diamond and Related Materials, 2016, 69: 33-39. [15] BURNS R C, CHUMAKOV A I, CONNELL S H, et al. HPHT growth and X-ray characterization of high-quality type Ⅱa diamond[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2009, 21(36): 364224. [16] TSUBOUCHI N, MOKUNO Y, YAMAGUCHI H, et al. Characterization of crystallinity of a large self-standing homoepitaxial diamond film[J]. Diamond and Related Materials, 2009, 18(2/3): 216-219. [17] SAKWE S A, MÜLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526. [18] NAAMOUN M, TALLAIRE A, SILVA F, et al. Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment[J]. Physica Status Solidi (a), 2012, 209(9): 1715-1720. [19] ACHARD J, TALLAIRE A, MILLE V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates[J]. Physica Status Solidi (a), 2014, 211(10): 2264-2267. [20] TSUBOUCHI N, MOKUNO Y, SHIKATA S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment[J]. Diamond and Related Materials, 2016, 63: 43-46. [21] TSUBOUCHI N, SHIKATA S I. Evaluation method for grown-in dislocations in CVD single crystal diamond using plasma surface treatment[J]. Japanese Journal of Applied Physics, 2014, 53(6): 068010. [22] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching[J]. Thin Solid Films, 2016, 600: 142-145. [23] 于国建,徐明升,胡小波,等.SiC衬底上生长的GaN外延层的高分辨X射线衍射分析[J].人工晶体学报,2014,43(5):1017-1022. YU G J, XU M S, HU X B, et al. High resolution X-ray diffraction analysis of GaN epitaxial layer grown on SiC substrate[J]. Journal of Synthetic Crystals, 2014, 43(5): 1017-1022(in Chinese). [24] YUROV V, BUSHUEV E, BOLSHAKOV A, et al. Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with in situ low-coherence interferometry[J]. Physica Status Solidi (a), 2017, 214(11): 1700177. [25] YANG K C, XIA Y B, WANG L J, et al. Influence of intermittently etching on quality of CVD diamond thin films[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s321-s323. [26] 刘剑红,陈美华,吴 改,等.金刚石的晶体质量评定探究[J].人工晶体学报,2014,43(3):559-564. LIU J H, CHEN M H, WU G, et al. Study on the evaluation of the crystal quality of diamonds[J]. Journal of Synthetic Crystals, 2014, 43(3): 559-564(in Chinese). |