[1] 吴金根,高翔宇,陈建国,等.高温压电材料、器件与应用[J].物理学报,2018,67(20):10-39. WU J G, GAO X Y, CHEN J G, et al. Review of high temperature piezoelectric materials, devices, and applications[J]. Acta Physica Sinica, 2018, 67(20): 10-39(in Chinese). [2] 张大龙,陈志伟,黄伟川,等.层状类钙钛矿多铁性材料研究进展[J].硅酸盐学报,2017,45(12):1707-1720. ZHANG D L, CHEN Z W, HUANG W C, et al. Development of multiferroic layered-perovskite-like oxides[J]. Journal of the Chinese Ceramic Society, 2017, 45(12): 1707-1720(in Chinese). [3] DE ARAUJO C A P, CUCHIARO J D, MCMILLAN L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature, 1995, 374(6523): 627-629. [4] DING Y, LIU J S, QIN H X, et al. Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes[J]. Applied Physics Letters, 2001, 78(26): 4175-4177. [5] HA S D, RAMANATHAN S. Adaptive oxide electronics: a review[J]. Journal of Applied Physics, 2011, 110(7): 071101. [6] PAN Z, WANG P, HOU X, et al. Fatigue-free Aurivillius phase ferroelectric thin films with ultrahigh energy storage performance[J]. Advanced Energy Materials, 2020, 10 (31), 2001536. [7] WU Q, WU X, ZHAO Y S, et al. Design of lead-free films with high energy storage performance via inserting a single perovskite into Bi4Ti3O12[J]. Chinese Physics Letters, 2020, 37(11): 123-130. [8] WU Q, CHEN X H, ZHAO L, et al. The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers[J]. Journal of Alloys and Compounds, 2022, 911: 165081. [9] YANG B B, GUO M Y, TANG X W, et al. Lead-free A2Bi4Ti5O18 thin film capacitors (A=Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability[J]. Journal of Materials Chemistry C, 2019, 7(7): 1888-1895. [10] SCOTT J F, ROSS F M, DE ARAUJO C A P, et al. Structure and device characteristics of SrBi2Ta2O9-based nonvolatile random-access memories[J]. MRS Bulletin, 1996, 21(7): 33-39. [11] SUBBARAO E C. A family of ferroelectric bismuth compounds[J]. Journal of Physics and Chemistry of Solids, 1962, 23(6): 665-676. [12] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9[J]. Arkiv for Kemi, 1950,1(5): 463-480. [13] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 2. Structure of Bi4Ti3O12[J]. Arkiv for Kemi, 1950, 1(6): 499-512. [14] AURIVILLIUS B. Mixed oxides with layer lattices. 3. Structure of BaBi4Ti4O15[J]. Arkiv for Kemi, 1951, 2(6): 519-527. [15] ZOU H, HUI X W, WANG X S, et al. Luminescent, dielectric, and ferroelectric properties of Pr doped Bi7Ti4NbO21 multifunctional ceramics[J]. Journal of Applied Physics, 2013, 114(22): 223103. [16] MERCURIO D, TROLLIARD G, HANSEN T, et al. Crystal structure of the ferroelectric mixed Aurivillius phase Bi7Ti4NbO21[J]. International Journal of Inorganic Materials, 2000, 2(5): 397-406. [17] TELLIER J, BOULLAY P, CRÉON N, et al. The crystal structure of the mixed-layer Aurivillius phase Bi5Ti1.5W1.5O15[J]. Solid State Sciences, 2005, 7(9): 1025-1034. [18] NOGUCHI Y, MIYAYAMA M, KUDO T. Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics[J]. Applied Physics Letters, 2000, 77(22): 3639-3641. [19] RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices[J]. Nature Reviews Materials, 2019, 4(4): 257-268. [20] FU Y P, JIANG X Y, LI X T, et al. Cation engineering in two-dimensional ruddlesden-popper lead iodide perovskites with mixed large A-site cations in the cages[J]. Journal of the American Chemical Society, 2020, 142(8): 4008-4021. [21] OK K M, HALASYAMANI P S, CASANOVA D, et al. Distortions in octahedrally coordinated d0 transition metal oxides: a continuous symmetry measures approach[J]. Chemistry of Materials, 2006, 18(14): 3176-3183. [22] HALASYAMANI P S. Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals[J]. Chemistry of Materials, 2004, 16(19): 3586-3592. [23] ETXEBARRIA I, PEREZ-MATO J M, BOULLAY P. The role of trilinear couplings in the phase transitions of aurivillius compounds[J]. Ferroelectrics, 2010, 401(1): 17-23. [24] BENEDEK N A, RONDINELLI J M, DJANI H, et al. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments[J]. Dalton Transactions, 2015, 44(23): 10543-10558. [25] WOLFE R W, NEWNAHM R E, KAY M I. Crystal structure of Bi2WO6[J]. Solid State Communications, 1969, 7(24): 1797-1801. [26] TELLER R G, BRAZDIL J F, GRASSELLI R K, et al. The structure of γ-bismuth molybdate, Bi2MoO6, by powder neutron diffraction[J]. Acta Crystallographica Section C Crystal Structure Communications, 1984, 40(12): 2001-2005. [27] TIAN X X, GAO Z L, CHEN F F, et al. Insights into the polymorphism of Bi2W2O9: single crystal growth and a complete survey of the variable-temperature thermal and dielectric properties[J]. CrystEngComm, 2018, 20(19): 2669-2680. [28] ETOGO A, LIU R, REN J B, et al. Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2016, 4(34): 13242-13250. [29] VORONKOVA V I, KHARITONOVA E P, RUDNITSKAYA O G. Refinement of Bi2WO6 and Bi2MoO6 polymorphism[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 274-279. [30] DJANI H, BOUSQUET E, KELLOU A, et al. First-principles study of the ferroelectric Aurivillius phase Bi2WO6[J]. Physical Review B, 2012, 86(5): 054107. [31] NOGUCHI Y, MURATA K, MIYAYAMA M. Defect control for polarization switching in Bi2WO6-based single crystals[J]. Applied Physics Letters, 2006, 89(24): 242916. [32] WANG C S, KE X X, WANG J J, et al. Ferroelastic switching in a layered-perovskite thin film[J]. Nature Communications, 2016, 7: 10636. [33] CASTRO A, BEGUE P, JIMENEZ B, et al. New Bi2Mo1-xWxO6 solid solution: mechanosynthesis, structural study, and ferroelectric properties of the x=0.75 member[J]. Chemistry of Materials, 2003, 15 (17): 3395-3401. [34] MURAMATSU K, WATANABE A, GOTO M. Flux growth of Bi2WO6 single crystal below the transformation temperature[J]. Journal of Crystal Growth, 1978, 44(1): 50-52. [35] DE L'EPREVIER A G, SHUKLA V N, PAYNE D A. Crystal growth of bismuth tungstate[J]. Ferroelectrics, 1980, 28(1): 383-386. [36] TAKEDA H, NISHIDA T, OKAMURA S, et al. Crystal growth of bismuth tungstate Bi2WO6 by slow cooling method using borate fluxes[J]. Journal of the European Ceramic Society, 2005, 25(12): 2731-2734. [37] TAKEDA H, HAN J S, NISHIDA M, et al. Growth and piezoelectric properties of ferroelectric Bi2WO6[J]. Solid State Communications, 2010, 150(17/18): 836-839. [38] KANIA A, NIEWIADOMSKI A, KUGEL G E. Dielectric and Raman scattering studies of Bi2WO6 single crystals[J]. Phase Transitions, 2013, 86(2/3): 290-300. [39] THOMPSON J G, SCHMID S, WITHERS R L, et al. Comparison of the crystal structures of γ-Bi2MoO6 and Bi2WO6[J]. Journal of Solid State Chemistry, 1992, 101(2): 309-321. [40] GOODENOUGH J B. Jahn-teller phenomena in solids[J]. Annual Review of Materials Science, 1998, 28: 1-27. [41] HALASYAMANI P S, POEPPELMEIER K R. Noncentrosymmetric oxides[J]. Chemistry of Materials, 1998, 10(10): 2753-2769. [42] ZHANG J J, ZHANG Z H, ZHANG W G, et al. Polymorphism of BaTeMo2O9: a new polar polymorph and the phase transformation[J]. Chemistry of Materials, 2011, 23(16): 3752-3761. [43] GALY J, MEUNIER G, ANDERSSON S, et al. Stéréochimie des eléments comportant des paires non liées: Ge (Ⅱ), As (Ⅲ), Se (Ⅳ), Br (V), Sn (Ⅱ), Sb (Ⅲ), Te (Ⅳ), I (Ⅴ), Xe (Ⅵ), Tl (Ⅰ), Pb (Ⅱ), et Bi (Ⅲ) (oxydes, fluorures et oxyfluorures)[J]. Journal of Solid State Chemistry, 1975, 13(1/2): 142-159. |