[1] NOVOSELOV K S, FAL′KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [2] LIN L, PENG H L, LIU Z F. Synthesis challenges for graphene industry[J]. Nature Materials, 2019, 18(6): 520-524. [3] LÓPEZ G A, MITTEMEIJER E J. The solubility of C in solid Cu[J]. Scripta Materialia, 2004, 51(1): 1-5. [4] SHI Q T, TOKARSKA K, TA H Q, et al. Substrate developments for the chemical vapor deposition synthesis of graphene[J]. Advanced Materials Interfaces, 2020, 7(7): 1902024. [5] 金荣涛,赵 莉.压延铜箔制备技术分析[J].上海有色金属,2014,35(2):86-90. JIN R T, ZHAO L. On key technology for rolled copper foil[J]. Shanghai Nonferrous Metals, 2014, 35(2): 86-90(in Chinese). [6] ZHANG J C, LIN L, JIA K C, et al. Controlled growth of single-crystal graphene films[J]. Advanced Materials, 2020, 32(1): e1903266. [7] SUN F T, FENG A H, CHEN B B, et al. Effect of copper pretreatment on growth of graphene films by chemical vapor deposition[J]. Journal of Inorganic Materials, 2020, 35(10): 1177. [8] DENG B, HOU Y, LIU Y, et al. Growth of ultraflat graphene with greatly enhanced mechanical properties[J]. Nano Letters, 2020, 20(9): 6798-6806. [9] HUET B, RASKIN J P. Role of Cu foil in situ annealing in controlling the size and thickness of CVD graphene domains[J]. Carbon, 2018, 129: 270-280. [10] ZHANG X F, WU T R, JIANG Q, et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 ℃ via chemical vapor deposition[J]. Small, 2019, 15(22): e1805395. [11] DENG B, XIN Z W, XUE R W, et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays[J]. Science Bulletin, 2019, 64(10): 659-668. [12] HU B S, WEI Z D, AGO H, et al. Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films[J]. Science China Chemistry, 2014, 57(6): 895-901. [13] GAO L, GUEST J R, GUISINGER N P. Epitaxial graphene on Cu(111)[J]. Nano Letters, 2010, 10(9): 3512-3516. [14] OGAWA Y, HU B S, OROFEO C M, et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 219-226. [15] RASOOL H I, SONG E B, MECKLENBURG M, et al. Atomic-scale characterization of graphene grown on copper (100) single crystals[J]. Journal of the American Chemical Society, 2011, 133(32): 12536-12543. [16] MECA E, LOWENGRUB J, KIM H, et al. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments[J]. Nano Letters, 2013, 13(11): 5692-5697. [17] HEDAYAT S M, KARIMI-SABET J, SHARIATY-NIASSAR M. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures[J]. Applied Surface Science, 2017, 399: 542-550. [18] TAO L, LEE J, CHOU H, et al. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films[J]. ACS Nano, 2012, 6(3): 2319-2325. [19] WU M H, ZHANG Z B, XU X Z, et al. Seeded growth of large single-crystal copper foils with high-index facets[J]. Nature, 2020, 581(7809): 406-410. [20] HOU Y T, WANG B J, ZHAN L L, et al. Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates[J]. Materials Today, 2020, 36: 10-17. [21] WANG Y, CHENG Y, WANG Y L, et al. Chemical vapor deposition growth of graphene domains across the Cu grain boundaries[J]. Nano, 2018, 13(8): 1850088. [22] YE J, JEONG J. Effects of structural characteristics of Cu grain boundaries on graphene growth[J]. Carbon, 2021, 176: 262-270. [23] HUET B, RASKIN J P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene[J]. Nanoscale, 2018, 10(46): 21898-21909. [24] YOON D, SON Y W, CHEONG H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy[J]. Nano Letters, 2011, 11(8): 3227-3231. [25] NANAYAKKARA T R, WIJEWARDENA U K, WITHANAGE S M, et al. Strain relaxation in different shapes of single crystal graphene grown by chemical vapor deposition on copper[J]. Carbon, 2020, 168: 684-690. [26] CHO J, GAO L, TIAN J F, et al. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing[J]. ACS Nano, 2011, 5(5): 3607-3613. [27] LI J Z, CHEN M G, SAMAD A, et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate[J]. Nature Materials, 2022, 21(7): 740-747. [28] ZHANG J, WANG F, SHENOY V B, et al. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD)[J]. Materials Today, 2020, 40: 132-139. [29] HUET B, RASKIN J P, SNYDER D W, et al. Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology[J]. Carbon, 2020, 163: 95-104. [30] BELYAEVA L A, JIANG L, SOLEIMANI A, et al. Liquids relax and unify strain in graphene[J]. Nature Communications, 2020, 11: 898. [31] LUO D, WANG M H, LI Y Q, et al. Adlayer-free large-area single crystal graphene grown on a Cu(111) foil[J]. Advanced Materials, 2019, 31(35): e1903615. |