[1] PERA-TITUS M, GARCiA-MOLINA V, BAÑOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review[J]. Applied Catalysis B: Environmental, 2004, 47(4): 219-256. [2] MALATO S, FERNÁNDEZ-IBÁÑEZ P, MALDONADO M I, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends[J]. Catalysis Today, 2009, 147(1): 1-59. [3] NAHYOON N A, LIU L F, SALEEM W, et al. Efficient photocatalytic treatment of sugar mill wastewater with 2%Ag3PO4/Fe/GTiP nanocomposite[J]. Arabian Journal of Chemistry, 2020, 13(2): 3624-3632. [4] KHODJA A A, SEHILI T, PILICHOWSKI J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2/3): 231-239. [5] BHUSHAN B, JAHAN K, VERMA V, et al. Photodegradation of methylene blue dye by powders of Ni-ZnO floweret consisting of petals of ZnO nanorod around Ni-rich core[J]. Materials Chemistry and Physics, 2020, 253: 123394. [6] MANSILLA H D, VILLASEÑOR J, MATURANA G, et al. ZnO-catalysed photodegradation of kraft black liquor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78(3): 267-273. [7] KANSAL S K, SINGH M, SUD D. Studies on TiO2/ZnO photocatalysed degradation of lignin[J]. Journal of Hazardous Materials, 2008, 153(1/2): 412-417. [8] CHEN T W, ZHENG Y H, LIN J M, et al. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(7): 997-1003. [9] XU X L, DUAN X, YI Z G, et al. Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light[J]. Catalysis Communications, 2010, 12(3): 169-172. [10] WAN Q, WANG T H, ZHAO J C. Enhanced photocatalytic activity of ZnO nanotetrapods[J]. Applied Physics Letters, 2005, 87(8): 083105. [11] GRÖTTRUP J, POSTICA V, SMAZNA D, et al. UV detection properties of hybrid ZnO tetrapod 3-D networks[J]. Vacuum, 2017, 146: 492-500. [12] SCHWITZGEBEL J, EKERDT J G, GERISCHER H, et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions[J]. The Journal of Physical Chemistry, 1995, 99(15): 5633-5638. [13] WANG J, FAN X M, TIAN K, et al. Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents[J]. Applied Surface Science, 2011, 257(17): 7763-7770. [14] TENNAKONE K, KIRIDENA W C B, PUNCHIHEWA S. Photodegradation of visible-light-absorbing organic compounds in the presence of semiconductor catalysts[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 68(3): 389-393. [15] SAKTHIVEL S, GEISSEN S U, BAHNEMANN D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1/2/3): 283-293. [16] ZHANG Z H, YUAN Y, FANG Y J, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta, 2007, 73(3): 523-528. [17] HELAÏLI N, BESSEKHOUAD Y, BOUGUELIA A, et al. P-Cu2O/n-ZnO heterojunction applied to visible light Orange Ⅱ degradation[J]. Solar Energy, 2010, 84(7): 1187-1192. [18] WANG Y, LI S C, SHI H, et al. Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities[J]. Nanoscale, 2012, 4(24): 7817-7824. [19] SARAVANAN R, KARTHIKEYAN S, GUPTA V K, et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination[J]. Materials Science and Engineering: C, 2013, 33(1): 91-98. [20] WANG J, FAN X M, WU D Z, et al. Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property[J]. Applied Surface Science, 2011, 258(5): 1797-1805. [21] BENNICI S, GERVASINI A. Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2)[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 336-344. [22] WANG L, HAN K, SONG G, et al. Characterization of electro-deposited CuO as a low-cost material for high-efficiency solar cells[J]. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, 1: 130-133. [23] ZHOU K B, WANG R P, XU B Q, et al. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J]. Nanotechnology, 2006, 17(15): 3939-3943. [24] ZHANG H X, FENG J, ZHANG M L. Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor[J]. Materials Research Bulletin, 2008, 43(12): 3221-3226. [25] LI Y, YANG X Y, ROOKE J, et al. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance[J]. Journal of Colloid and Interface Science, 2010, 348(2): 303-312. [26] SU W, WEI S S, HU S Q, et al. Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol[J]. Journal of Hazardous Materials, 2009, 172(2/3): 716-720. [27] SHEN E H, WANG C L, WANG E B, et al. PEG-assisted synthesis of SnO2 nanoparticles[J]. Materials Letters, 2004, 58(29): 3761-3764. [28] LIU X H, YANG J, WANG L, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder[J]. Materials Science and Engineering: A, 2000, 289(1/2): 241-245. [29] SHANG M, WANG W Z, ZHOU L, et al. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant[J]. Journal of Hazardous Materials, 2009, 172(1): 338-344. [30] OKADA T. Complexation of poly(oxyethylene) in analytical chemistry. A review[J]. The Analyst, 1993, 118(8): 959. [31] DOBRYSZYCKI J, BIALLOZOR S. On some organic inhibitors of zinc corrosion in alkaline media[J]. Corrosion Science, 2001, 43(7): 1309-1319. [32] XIA S J, LIU F X, NI Z M, et al. Ti-based layered double hydroxides: efficient photocatalysts for azo dyes degradation under visible light[J]. Applied Catalysis B: Environmental, 2014, 144: 570-579. [33] ZHANG Q, JING Y H, SHIUE A, et al. Photocatalytic degradation of methyl blue dye by pure and platinum doped titanium dioxide nanotube photocatalysts[J]. Advanced Science Letters, 2012, 18(1): 213-220. [34] XU J, CHANG Y G, ZHANG Y Y, et al. Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites[J]. Applied Surface Science, 2008, 255(5): 1996-1999. [35] YANG Z M, ZHANG P, DING Y H, et al. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: highly photocatalytic property and enhanced photostability[J]. Materials Research Bulletin, 2011, 46(10): 1625-1631. [36] WEI S Q, CHEN Y Y, MA Y Y, et al. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance[J]. Journal of Molecular Catalysis A: Chemical, 2010, 331(1/2): 112-116. [37] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4): 543-556. [38] YATMAZ H C, AKYOL A, BAYRAMOGLU M. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions[J]. Industrial & Engineering Chemistry Research, 2004, 43(19): 6035-6039. [39] LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758. [40] LIN B X, FU Z X, JIA Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J]. Applied Physics Letters, 2001, 79(7): 943-945. |