[1] 陈丁琼.锂离子电池硅/碳负极材料的研究[D].厦门:厦门大学,2017. CHEN D Q. The study of Si/C composites anode for lithium-ion battery[D]. Xiamen: Xiamen University, 2017(in Chinese). [2] 王淑娴.多孔硅粉的制备及其作为锂离子电池负极材料的应用[D].杭州:浙江大学,2019. WANG S X. Synthesis of porous silicon and its application as anode material for lithium-ion batteries[D]. Hangzhou: Zhejiang University, 2019(in Chinese). [3] CHEN X, LI H X, YAN Z H, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536. [4] ASENBAUER J, EISENMANN T, KUENZEL M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416. [5] 王 垒.锂离子电池材料的研究与应用[D].呼和浩特:内蒙古工业大学,2013. WANG L. Research and application of lithium ion battery materials[D]. Hohhot: Inner Mongolia University of Tehchnology, 2013(in Chinese). [6] 安威力.多孔微米硅基负极材料的设计、合成及储锂性能研究[D].武汉:武汉科技大学,2019. AN W L. Controlled synthesis and lithium-ion storage performances of porous micro-sized silicon based anode materials for advanced lithium-ion batteries[D]. Wuhan: Wuhan University of Science and Technology, 2019(in Chinese). [7] 唐校福.锂离子电池硅碳负极材料的制备改性及电化学性能研究[D].哈尔滨:哈尔滨工业大学,2018. TANG X F. Study on preparation and modification electrochemical performance of Si/C anode materials for LIBS[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese). [8] 李世恒,王 超,鲁振达.锂离子电池硅基负极材料的预锂化研究进展[J].高等学校化学学报,2021,42(5):1530-1542. LI S H, WANG C, LU Z D. Challenges and recent progress of prelithiation for Si-based anodes in lithium-ion batteries[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1530-1542(in Chinese). [9] WANG L, XI F S, ZHANG Z, et al. Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode[J]. Waste Management, 2021, 132: 56-63. [10] WANG K, PEI S E, HE Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal, 2019, 356: 272-281. [11] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577. [12] JIA H P, LI X L, SONG J H, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): 1474. [13] GE M, FANG X, RONG J, et al. Review of porous silicon preparation and its application for lithium-ion battery anodes[J]. Nanotechnology, 2013, 24(42): 422001. [14] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356. [15] 张淑东.自下而上与自上而下法构筑纳米结构及其物性研究[D].合肥:中国科学技术大学,2010. ZHANG S D. Construction of nanostructures via top down and bottom up strategy and their properties[D]. Hefei: University of Science and Technology of China, 2010(in Chinese). [16] BURHAM N, HAMZAH A A, MAJLIS B Y. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane[J]. Bio-Medical Materials and Engineering, 2014, 24(6): 2203-2209. [17] LIN J C, HOU H T, WANG H K, et al. Edge effect in electrochemical etching on porous silicon and its direct evidence on photoluminescence patterns[J]. Optical Materials Express, 2017, 7(3): 880. [18] KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ion batteries[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85: 223-226. [19] ZHENG K, ZOU X L, XIE X L, et al. Electrosynthesis of SiC derived porous carbon nanospheres for supercapacitors[J]. Materials Letters, 2018, 216: 265-268. [20] LI X L, GU M, HU S Y, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes[J]. Nature Communications, 2014, 5: 4105. [21] KOROTCENKOV G, CHO B K. Silicon porosification: state of the art[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(3): 153-260. [22] SOHN M, KIM D S, PARK H I, et al. Porous silicon-carbon composite materials engineered by simultaneous alkaline etching for high-capacity lithium storage anodes[J]. Electrochimica Acta, 2016, 196: 197-205. [23] YANG T Y, GAO Y, TANG Y K, et al. Porous silicon from industrial waste engineered for superior stability lithium-ion battery anodes[J]. Journal of Nanoparticle Research, 2021, 23(9): 209. [24] 习小明,张 君,涂飞跃,等.锂离子电池三维多孔微米硅负极研究进展[J].矿冶工程,2022,42(3):129-133. XI X M, ZHANG J, TU F Y, et al. Research progress in three-dimensional porous micrometer-sized silicon anode for lithium-ion batteries[J]. Mining and Metallurgical Engineering, 2022, 42(3): 129-133(in Chinese). [25] HUO C L, WANG J, FU H X, et al. Metal-assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application[J]. Advanced Functional Materials, 2020, 30(52): 2005744. [26] SRIVASTAVA R P, KHANG D Y. Structuring of Si into multiple scales by metal-assisted chemical etching[J]. Advanced Materials, 2021, 33(47): e2005932. [27] BANG B M, LEE J I, KIM H, et al. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching[J]. Advanced Energy Materials, 2012, 2(7): 878-883. [28] ZHOU X Y, CHEN S, ZHOU H C, et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling[J]. Microporous and Mesoporous Materials, 2018, 268: 9-15. [29] CHEN Y, LIU L F, XIONG J, et al. Lithium ion batteries: porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries[J]. Advanced Functional Materials, 2015, 25(43): 6693. [30] PARK H, LEE S, YOO S, et al. Control of interfacial layers for high-performance porous Si lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16360-16367. [31] ASOH H, SEKIDO D, HASHIMOTO H. Potential of micrometer-sized graphite as a catalyst for chemical etching of silicon[J]. Materials Science in Semiconductor Processing, 2021, 121: 105327. [32] FENG J K, ZHANG Z, CI L J, et al. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 287: 177-183. [33] 孙 林,谢 杰,刘 涛,等.多孔硅纳米材料的制备及在高能锂电池中的应用[J].无机化学学报,2020,36(3):393-405. SUN L, XIE J, LIU T, et al. Preparation of porous silicon nanomaterials and applications in high energy lithium ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 393-405(in Chinese). [34] HAO Q, HOU J G, YE J J, et al. Hierarchical macroporous Si/Sn composite: easy preparation and optimized performances towards lithium storage[J]. Electrochimica Acta, 2019, 306: 427-436. [35] TAO Y, ZENG G F, XIAO C Y, et al. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 554: 674-681. [36] BAO Z H, WEATHERSPOON M R, SHIAN S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132): 172-175. [37] JIA H P, ZHENG J M, SONG J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597. [38] ZHOU X Y, WU L L, YANG J, et al. Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries[J]. Journal of Power Sources, 2016, 324: 33-40. |