[1] 李素青.GB/T 25076《太阳能电池用硅单晶》及GB/T 26071《太阳能电池用硅单晶片》标准解读[J].世界有色金属,2018(18):165-167. LI S Q. Interpretation of GB/T 25076“Monocrystalline silicon for solar cell” and GB/T 26071 “Monocrystalline silicon wafers for solar cells”[J]. World Nonferrous Metals, 2018(18): 165-167(in Chinese). [2] 刘 涵,刘 丁.基于支持向量机的参数自整定PID非线性系统控制[J].控制理论与应用,2008,25(3):468-474. LIU H, LIU D. Self-tuning PID controller for a nonlinear system based on support vector machines[J]. Control Theory & Applications, 2008, 25(3): 468-474(in Chinese). [3] 俞金寿,顾幸生.过程控制工程[M].4版.北京:高等教育出版社,2012. YU J S, GU X S. Process control engineering[M]. 4th ed. Beijing: Higher Education Press, 2012(in Chinese). [4] 王 展.恒拉速工艺下硅单晶直径控制方法研究[D].西安:西安理工大学,2020. WANG Z. Research on diameter control method of silicon single crystal under constant pulling velocity process[D]. Xi’an: Xi’an University of Technology, 2020(in Chinese). [5] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process I: motivation, modeling and feedback controller design[J]. Journal of Crystal Growth, 2010, 312(7): 1005-1018. [6] RAHMANPOUR P, HOVD M, BONES J A. Nonlinear state estimation in the Czochralski process[J]. IFAC Proceedings Volumes, 2014, 47(3): 4891-4896. [7] DERBY J J, BROWN R A. On the dynamics of Czochralski crystal growth[J]. Journal of Crystal Growth, 1987, 83(1): 137-151. [8] 张 妮,刘 丁,冯雪亮.直拉硅单晶生长过程中工艺参数对相变界面形态的影响[J].物理学报,2018,67(21):415-426. ZHANG N, LIU D, FENG X L. Effects of process parameters on melt-crystal interface in Czochralski silicon crystal growth[J]. Acta Physica Sinica, 2018, 67(21): 415-426(in Chinese). [9] CHEN J C, CHIANG P Y, CHANG C H, et al. Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field[J]. Journal of Crystal Growth, 2014, 401: 813-819. [10] 张 晶,刘 丁,杜燕军.直拉硅单晶非均匀相变温度场最优控制[J].控制理论与应用,2021,38(1):44-52. ZHANG J, LIU D, DU Y J. Optimal control for heterogeneous phase transition temperature field of Czochralski monocrystalline silicon[J]. Control Theory & Applications, 2021, 38(1): 44-52(in Chinese). [11] 王春阳.直拉硅单晶等径阶段直径数据建模与模型预测控制[D].西安:西安科技大学,2019. WANG C Y. Data modeling and model prediction control of equal diameter phase diameter of Cz single crystal[D]. Xi′an: Xi′an University of Science and Technology, 2019(in Chinese). [12] 王 可.直拉单晶炉热场模型参数辨识及模型预测控制[D].兰州:兰州大学,2014. WANG K. Czochralski crystal furnace thermal field model parameter identification and the model predictive control[D]. Lanzhou: Lanzhou University, 2014(in Chinese). [13] 李欣鸽.CZ硅单晶等径生长阶段关键参数优化研究[D].郑州:郑州大学,2020. LI X G. Study on the optimization of key parameters of CZ single crystal in equal diameter growth stage[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese). [14] 刘聪聪.基于软测量建模的硅单晶品质预测控制[D].西安:西安理工大学,2021. LIU C C. Predictive control of silicon single crystal quality based on soft sensor modeling[D]. Xi′an: Xi′an University of Technology, 2021(in Chinese). [15] 张西亚,高德东,王 珊,等.基于数据驱动的晶体直径模型辨识方法研究[J].人工晶体学报,2021,50(8):1552-1561+1574. ZHANG X Y, GAO D D, WANG S, et al. Research on identification method of crystal diameter model based on data driven[J]. Journal of Synthetic Crystals, 2021, 50(8): 1552-1561+1574(in Chinese). [16] 刘 丁.直拉硅单晶生长过程建模与控制[M].北京:科学出版社,2015. LIU D. Modeling and control of growth process of Czochralski silicon[M]. Beijing: Science Press, 2015(in Chinese). [17] 赵 翔,茹东恒,王 鹏,等.基于NARX神经网络方法的汽轮机转子关键部位应力预测[J].应用数学和力学,2021,42(8):771-784. ZHAO X, RU D H, WANG P, et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784(in Chinese). [18] 常泽明,李璐祎.基于NARX和Kriging的时变可靠性分析的双层代理模型方法[J/OL].北京航空航天大学学报:1-16[2022-05-05].DOI:10.13700/j.bh.1001-5965.2021.0541. CHANG Z M, LI L Y. Two-level surrogate model method for time-varying reliability analysis based on NARX and Kriging[J/OL]. Journal of Peking University of Aeronautics and Astronautics: 1-16 [2022-05]. DOI: 10.13700/j.bh.1001-5965.2021.0541(in Chinese). [19] 李 未,朱梦圆,王裕成,等.基于NARX神经网络的千岛湖藻类短期预测模型构建[J].环境科学研究,2022,35(4):918-925. LI W, ZHU M Y, WANG Y C, et al. Short-term forecasting model for algae based on NARX neural network in Qiandaohu Reservoir[J]. Research of Environmental Sciences, 2022, 35(4): 918-925(in Chinese). [20] 姜宇航,王 伟,邹丽芳,等.基于PSO-VMD、NARX与GRU的滑坡位移动态预测模型研究[J/OL].岩土力学:1-12[2022-05-05].DOI:10.16285/j.rsm.2021.0247. JIANG Y H, WANG W, ZOU L F, et al. Dynamic prediction model of landslide displacement based on PSO-VMD, NARX and GRU[J/OL].Geotechnical mechanics:1-12 [2022-05-05]. DOI: 10.16285/j.rsm.2021.0247(in Chinese). [21] 王 月.最大信息系数的算法分析及改进[D].西安:西安电子科技大学,2019. WANG Y. Algorithm analysis and improvement of the maximal information coefficient[D]. Xi’an: Xidian University, 2019(in Chinese). [22] 刘汉明.基于最大信息系数的复杂疾病全基因组关联算法研究[D].成都:电子科技大学,2015. LIU H M. Reseach on algorithms of genome-wide association study for complex diseases based on maximal information coefficient[D]. Chengdu: University of Electronic Science and Technology of China, 2015(in Chinese). [23] 魏 孟,王 桥,叶 敏,等.基于NARX动态神经网络的锂离子电池剩余寿命间接预测[J].工程科学学报,2022,44(3):380-388. WEI M, WANG Q, YE M, et al. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese Journal of Engineering, 2022, 44(3): 380-388(in Chinese). [24] 陈文进,朱 峰,张童彦,等.基于AFSA-BP神经网络的光伏功率预测方法[J].浙江电力,2022,41(4):7-13. CHEN W J, ZHU F, ZHANG T Y, et al. A photovoltaic power prediction method based on AFSA-BP neural network[J]. Zhejiang Electric Power, 2022, 41(4): 7-13(in Chinese). |