[1] CHEN W J, LIANG R R, WANG J, et al. Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 high-κ gate dielectric[J]. Science Bulletin, 2018, 63(15): 997-1005. [2] OCTON T J, NAGAREDDY V K, RUSSO S, et al. Fast high-responsivity few-layer MoTe2 photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1750-1754. [3] WU E X, XIE Y, ZHANG J, et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation[J]. Science Advances, 2019, 5(5): eaav3430. [4] LIN Y F, XU Y, LIN C Y, et al. Origin of noise in layered MoTe2transistors and its possible use for environmental sensors[J]. Advanced Materials, 2015, 27(42): 6612-6619. [5] WU E X, XIE Y, YUAN B, et al. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination[J]. ACS Sensors, 2018, 3(9): 1719-1726. [6] ZHANG C X, KC S, NIE Y F, et al. Charge mediated reversible metal-insulator transition in monolayer MoTe2 and WxMo1-xTe2 alloy[J]. ACS Nano, 2016, 10(8): 7370-7375. [7] ZHANG F, ZHANG H R, KRYLYUK S, et al. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories[J]. Nature Materials, 2019, 18(1): 55-61. [8] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinic MoTe2[J]. Nature Physics, 2015, 11(6): 482-486. [9] RUPPERT C, ASLAN B, HEINZ T F. Optical properties and band gap of single- and few-layer MoTe2 crystals[J]. Nano Letters, 2014, 14(11): 6231-6236. [10] FROEHLICHER G, LORCHAT E, BERCIAUD S. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2)[J]. Physical Review B, 2016, 94(8): 085429. [11] CHO S, KIM S, KIM J H, et al. Phase patterning for ohmic homojunction contact in MoTe2[J]. Science, 2015, 349(6248): 625-628. [12] LIN Y F, XU Y, WANG S T, et al. Ambipolar MoTe2 transistors and their applications in logic circuits[J]. Advanced Materials, 2014, 26(20): 3263-3269. [13] LI Y Z, ZHANG J X, HUANG D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 2017, 12(10): 987-992. [14] ZHANG Y, CHANG T R, ZHOU B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115. [15] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. [16] WANG X J, SHANG J, ZHU M J, et al. Controlled growth of large-scale uniform 1T′ MoTe2 crystals with tunable thickness and their photodetector applications[J]. Nanoscale Horizons, 2020, 5(6): 954-959. [17] HUANG J H, DENG K Y, LIU P S, et al. Large-area two-dimensional layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere[EB/OL]. 2017: arXiv: 1704.06543. https://arxiv.org/abs/1704.06543. [18] HE Q Y, LI P J, WU Z H, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics[J]. Advanced Materials, 2019: 1901578. [19] WALDRON D, TIMOSHEVSKII V, HU Y B, et al. First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers[J]. Physical Review Letters, 2006, 97(22): 226802. [20] TAYLOR J, GUO H, WANG J. Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C60 device[J]. Physical Review B, 2001, 63(12): 121104. [21] HENRICKSON L E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors[J]. Journal of Applied Physics, 2002, 91(10): 6273-6281. [22] WALDRON D, HANEY P, LARADE B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions[J]. Physical Review Letters, 2006, 96(16): 166804. [23] TENNAKONE K. An oscillating electroscope[J]. American Journal of Physics, 1978, 46(2): 190. [24] XIE Y Q, ZHANG L, ZHU Y, et al. Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202. [25] LI S S, WANG T, CHEN X S, et al. Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current[J]. Nanoscale, 2018, 10(16): 7694-7701. |