[1] TERVO E J, STEINER M A. Semiconductor-dielectric-metal solar absorbers with high spectral selectivity[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111735. [2] ZHANG X, WANG J C, ANG L K, et al. Designing few-layer graphene Schottky contact solar cells: theoretical efficiency limits and parametric optimization[J]. Applied Physics Letters, 2021, 118(5): 053103. [3] LIU Y, ZHAO J, ZHANG S Y, et al. Advances and challenges of broadband solar absorbers for efficient solar steam generation[J]. Environmental Science: Nano, 2022, 9(7): 2264-2296. [4] POROSOFF M D, YANG X F, BOSCOBOINIK J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie International Edition, 2014, 53(26): 6705-6709. [5] LIAO L, WANG S N, XIAO J J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction[J]. Energy & Environmental Science, 2014, 7(1): 387-392. [6] TANG C Y, WANG W, SUN A K, et al. Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution[J]. ACS Catalysis, 2015, 5(11): 6956-6963. [7] XU C, WANG L B, LIU Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14(11): 1135-1141. [8] FURIMSKY E. Metal carbides and nitrides as potential catalysts for hydroprocessing[J]. Applied Catalysis A: General, 2003, 240(1/2): 1-28. [9] ISAEV E I, AHUJA R, SIMAK S I, et al. Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides[J]. Physical Review B, 2005, 72(6): 064515. [10] WILLENS R H, BUEHLER E, MATTHIAS B T. Superconductivity of the transition-metal carbides[J]. Physical Review, 1967, 159(2): 327-330. [11] MORTON N, JAMES B W, WOSTENHOLM G H, et al. Superconductivity of molybdenum and tungsten carbides[J]. Journal of the Less Common Metals, 1971, 25(1): 97-106. [12] ÃAKÄR D, SEVIK C, GÃ1/4LSEREN O, et al. Mo2C as a high capacity anode material: a first-principles study[J]. Journal of Materials Chemistry A, 2016, 4(16): 6029-6035. [13] SHI L, ZHAO T S, XU A, et al. Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries[J]. Science Bulletin, 2016, 61(14): 1138-1144. [14] NGUYEN D T, LE M Q. Mechanical properties of various two-dimensional silicon carbide sheets: an atomistic study[J]. Superlattices and Microstructures, 2016, 98: 102-115. [15] LE M Q, MORTAZAVI B, RABCZUK T. Mechanical properties of borophene films: a reactive molecular dynamics investigation[EB/OL]. 2017: arXiv: 1703.09058. https://arxiv.org/abs/1703.09058. [16] YORULMAZ U, ÖZDEN A, PERKGÖZ N K, et al. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation[J]. Nanotechnology, 2016, 27(33): 335702. [17] KUMAR R, RAJASEKARAN G, PARASHAR A. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study[J]. Nanotechnology, 2016, 27(8): 085706. [18] RAHAMAN O, MORTAZAVI B, DIANAT A, et al. A structural insight into mechanical strength of graphene-like carbon and carbon nitride networks[J]. Nanotechnology, 2017, 28(5): 055707. [19] ABADI R, UMA R P, IZADIFAR M, et al. The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet[J]. Computational Materials Science, 2016, 123: 277-286. [20] LIU R, DU Q Q, ZHAO R H, et al. Ultrafine Mo2C nanoparticles confined in 2D meshlike carbon nanolayers for effective hydrogen evolution[J]. ChemCatChem, 2020, 12(12): 3195-3201. [21] VRUBEL H, HU X L. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst[J]. ACS Catalysis, 2013, 3(9): 2002-2011. [22] MORTAZAVI B, SHAHROKHI M, MAKAREMI M, et al. Anisotropic mechanical and optical response and negative Poisson's ratio in Mo2C nanomembranes revealed by first-principles simulations[J]. Nanotechnology, 2017, 28(11): 115705. [23] KHALIL R M A, HUSSAIN M I, LUQMAN N, et al. DFT-based study of the structural, optoelectronic, mechanical and magnetic properties of Ti3AC2 (A=P, As, Cd) for coating applications[J]. RSC Advances, 2022, 12(7): 4395-4407. [24] WU H B, XIA B Y, YU L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, 6: 6512. [25] CHEN W F, WANG C H, SASAKI K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy & Environmental Science, 2013, 6(3): 943-951. [26] ADEWALE T, ORUH B. A theoretical and experimental study of the Broyden-Fletcher-Goldfarb-Shano (BFGS) update[J]. Academic Journals, 2013,6(8): 166-176. [27] KHALIL R M A, HUSSAIN M I, IMRAN M, et al. First-principles simulation of structural, electronic and optical properties of cerium trisulfide (Ce2S3) compound[J]. Journal of Electronic Materials, 2021, 50(4): 1637-1643. [28] KHALIL R M A, HUSSAIN F, HUSSAIN M I, et al. The investigation of optoelectronic, magnetic and dynamical properties of Ce and Ti doped 2D blue phosphorene: a dispersion corrected DFT study[J]. Journal of Alloys and Compounds, 2020, 827: 154255. [29] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |