[1] RAHMAN M Z, KHAN S I. Advances in surface passivation of c-Si solar cells[J]. Materials for Renewable and Sustainable Energy, 2012, 1(1): 1. [2] SCHMIDT J, MERKLE A, BRENDEL R, et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 461-466. [3] BLAKERS A W, WANG A H, MILNE A M, et al. 22.8% efficient silicon solar cell[J]. Applied Physics Letters, 1989, 55(13): 1363-1365. [4] RICHTER A, BENICK J, FELDMANN F, et al. N-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017, 173: 96-105. [5] SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 39-54. [6] WENHAM S R, ZHAO J, DAI X, et al. Surface passivation in high efficiency silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1/2/3/4): 377-384. [7] 胡 宇,孟凡英,董经兵,等.低温生长SiO2钝化膜在太阳电池上的应用[J].太阳能学报,2009,30(8):1073-1077. HU Y, MENG F Y, DONG J B, et al. SiO2 passivation film grown at low temperature and its application to the solar cell[J]. Acta Energiae Solaris Sinica, 2009, 30(8): 1073-1077(in Chinese). [8] SCHMIDT J, WERNER F, VEITH B, et al. Advances in the surface passivation of silicon solar cells[J]. Energy Procedia, 2012, 15: 30-39. [9] 杜永超,陈伟平,刘汉英,等.太阳电池用硅片表面钝化研究[J].电源技术,2004,28(10):641-643. DU Y C, CHEN W P, LIU H Y, et al. Silicon wafer surface passivation for solar cell[J]. Chinese Journal of Power Sources, 2004, 28(10): 641-643(in Chinese). [10] SCHMIDT J, KERR M. Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicon nitride[J]. Solar Energy Materials and Solar Cells, 2001, 65(1/2/3/4): 585-591. [11] HOEX B, SCHMIDT J, VAN DE SANDEN M C M, et al. Crystalline silicon surface passivation by the negative-charge-dielectric Al2O3[C]//2008 33rd IEEE Photovoltaic Specialists Conference. San Diego, CA, USA. IEEE: 1-4. [12] DUTTAGUPTA S, LIN F, SHETTY K D, et al. State-of-the-art surface passivation of boron emitters using inline PECVD AlOx/SiNx stacks for industrial high-efficiency silicon wafer solar cells[C]//2012 38th IEEE Photovoltaic Specialists Conference. Austin, TX, USA. IEEE: 1036-1039. [13] HOEX B, VAN DE SANDEN M C M, SCHMIDT J, et al. Surface passivation of phosphorus-diffused n+-type emitters by plasma-assisted atomic-layer deposited Al2O3[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(1): 4-6. [14] DULLWEBER T, GATZ S, HANNEBAUER H, et al. Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 630-638. [15] BONILLA R S, HOEX B, HAMER P, et al. Dielectric surface passivation for silicon solar cells: a review[J]. Physica Status Solidi (a), 2017, 214(7): 1700293. [16] ZHAO J H, WANG A H, GREEN M A. 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates[J]. Progress in Photovoltaics: Research and Applications, 1999, 7(6): 471-474. [17] LANCASTER K, GROβER S, FELDMANN F, et al. Study of pinhole conductivity at passivated carrier-selected contacts of silicon solar cells[J]. Energy Procedia, 2016, 92: 116-121. [18] FELDMANN F, BIVOUR M, REICHEL C, et al. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar Energy Materials and Solar Cells, 2014, 120: 270-274. [19] DINGEMANS G, KESSELS W M M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(4): 040802. [20] HOEX B, HEIL S B S, LANGEREIS E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3[J]. Applied Physics Letters, 2006, 89(4): 042112. [21] DINGEMANS G, TERLINDEN N M, PIERREUX D, et al. Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al2O3[J]. Electrochemical and Solid-State Letters, 2011, 14(1): H1. [22] AGOSTINELLI G, DELABIE A, VITANOV P, et al. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge[J]. Solar Energy Materials and Solar Cells, 2006, 90(18/19): 3438-3443. [23] MIKOLAJICK T, BARTHA J W, DIRNSTORFER I, et al. Investigation of the c-Si/Al2O3 interface for silicon surface passivation[C]// Pvsec, 2012, 28(3): 1793-1796. [24] MATSUMOTO T, NAKAJIMA H, IRISHIKA D, et al. Ultrathin SiO2 layer formed by the nitric acid oxidation of Si (NAOS) method to improve the thermal-SiO2/Si interface for crystalline Si solar cells[J]. Applied Surface Science, 2017, 395: 56-60. |