人工晶体学报 ›› 2022, Vol. 51 ›› Issue (12): 2164-2176.
师银来, 胡前库, 姬瑜锾, 王哲, 李丹丹, 王李波, 周爱国
收稿日期:
2022-08-08
出版日期:
2022-12-15
发布日期:
2023-01-09
通讯作者:
胡前库,教授。E-mail:hqk@hpu.edu.cn
作者简介:
师银来(1994—),男,河南省人,硕士研究生。E-mail:2113503387@qq.com
基金资助:
SHI Yinlai, HU Qianku, JI Yuhuan, WANG Zhe, LI Dandan, WANG Libo, ZHOU Aiguo
Received:
2022-08-08
Online:
2022-12-15
Published:
2023-01-09
摘要: MAX相是一类具有层状结构的三元碳化物或(和)氮化物,M是过渡金属元素,A主要是ⅢA~ⅤA族元素,X是C或N元素。这类化合物兼具陶瓷材料和金属材料的特点,具有优异的导电、导热、耐腐蚀以及抗氧化等性能,在诸多领域具有潜在应用价值。近年来,新元素、新结构和固溶体MAX相的不断出现,进一步扩展了MAX相家族。固溶体MAX相是将合适的元素固溶到已知MAX相中而得到的新MAX相。本文分四类总结了127种MAX相固溶体,对其结构改变和性能调控进行了概括,并指出目前研究存在的理论问题和亟须解决的关键技术,最后对MAX相固溶体的发展进行了预测和展望。
中图分类号:
师银来, 胡前库, 姬瑜锾, 王哲, 李丹丹, 王李波, 周爱国. 三元层状MAX相固溶体研究进展[J]. 人工晶体学报, 2022, 51(12): 2164-2176.
SHI Yinlai, HU Qianku, JI Yuhuan, WANG Zhe, LI Dandan, WANG Libo, ZHOU Aiguo. Research Progress of Layered Ternary MAX Phase Solid Solutions[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(12): 2164-2176.
[1] JEITSCHKO W, NOWOTNY H. Die kristallstruktur von Ti3SiC2—ein neuer komplexcarbid-typ[J]. Monatshefte für Chemie-Chemical Monthly, 1967, 98(2): 329-337. [2] WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die kristallstruktur von Ti3GeC2[J]. Monatshefte für Chemie Und Verwandte Teile Anderer Wissenschaften, 1967, 98(6): 2403-2405. [3] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte für Chemie Und Verwandte Teile Anderer Wissenschaften, 1964, 95(1): 178-179. [4] NOWOTNY V H. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Progress in Solid State Chemistry, 1971, 5: 27-70. [5] BARSOUM M W. The MN+1AXN phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201-281. [6] TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115-125. [7] JIN S, SU T C, HU Q K, et al. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020, 8(4): 158-164. [8] SHAMSIPOOR A, FARVIZI M, RAZAVI M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950 ℃ in presence of Na2SO4+V2O5 molten salts[J]. Ceramics International, 2021, 47(2): 2347-2357. [9] LU J L, ABBAS N, TANG J N, et al. Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments[J]. Corrosion Science, 2019, 158: 108106. [10] HADI M A, KELAIDIS N, NAQIB S H, et al. Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 162-171. [11] SUN Z M, HASHIMOTO H, ZHANG Z F, et al. Synthesis and characterization of a metallic ceramic material-Ti3SiC2[J]. Materials Transactions, 2006, 47(1): 170-174. [12] ZHANG Z, DUAN X M, JIA D C, et al. On the formation mechanisms and properties of MAX phases: a review[J]. Journal of the European Ceramic Society, 2021, 41(7): 3851-3878. [13] 李丹丹,胡前库,张 斌,等.基于新元素和新多层结构的MAX相陶瓷材料研究进展[J].人工晶体学报,2021,50(12):2379-2388. LI D D, HU Q K, ZHANG B, et al. Research progress of MAX phase ceramic materials based on new elements and new multilayer structures[J]. Journal of Synthetic Crystals, 2021, 50(12): 2379-2388(in Chinese). [14] FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC[J].Nature Materials, 2017, 16(8): 814-818. [15] 李 勉,李友兵,罗 侃,等.基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J].无机材料学报,2019,34(1):60-64. LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64(in Chinese). [16] HU C, LAI C C, TAO Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide[J]. Chemical Communications, 2015, 51(30): 6560-6563. [17] LANE N J, NAGUIB M, LU J, et al. Comment on “Ti5Al2C3: a new ternary carbide belonging to MAX phases in the Ti-Al-C system”[J]. Journal of the American Ceramic Society, 2012, 95(10): 3352-3354. [18] LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides[J]. Journal of the American Ceramic Society, 2006, 89(12): 3765-3769. [19] ZHANG J, LIU B, WANG J Y, et al. Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations[J]. Journal of Materials Research, 2009, 24(1): 39-49. [20] MENG F L, ZHOU Y C, WANG J Y. Strengthening of Ti2AlC by substituting Ti with V[J]. Scripta Materialia, 2005, 53(12): 1369-1372. [21] SUN S Y, YU Y D, SUN S L, et al. Magnetic properties and microstructures of Fe-doped (Ti1-xFex)3AlC2 MAX phase and their MXene derivatives[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(5): 1477-1483. [22] AZINA C, TUNCA B, PETRUHINS A, et al. Deposition of MAX phase-containing thin films from a (Ti, Zr)2AlC compound target[J]. Applied Surface Science, 2021, 551: 149370. [23] MANOUN B, LEAFFER O D, GUPTA S, et al. On the compression behavior of Ti2InC, (Ti0.5, Zr0.5)2InC, and M2SnC (M=Ti, Nb, Hf) to quasi-hydrostatic pressures up to 50 GPa[J]. Solid State Communications, 2009, 149(43/44): 1978-1983. [24] SCHUSTER J C, NOWOTNY H, VACCARO C. The ternary systems: Cr-Al-C, V-Al-C, and Ti-Al-C and the behavior of H-phases (M2AlC)[J]. Journal of Solid State Chemistry, 1980, 32(2): 213-219. [25] SALAMA I, EL-RAGHY T, BARSOUM M W. Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC[J]. Journal of Alloys and Compounds, 2002, 347(1/2): 271-278. [26] PAN R J, ZHU J F, LIU Y M. Synthesis, microstructure and properties of (Ti1-x, Mox)2AlC phases[J]. Materials Science and Technology, 2018, 34(9): 1064-1069. [27] BARSOUM M W, GOLCZEWSKI J, SEIFERT H J, et al. Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC[J]. Journal of Alloys and Compounds, 2002, 340(1/2): 173-179. [28] SRIDHARAN S, NOWOTNY H. Studies in the ternary system Ti-Ta-Al and in the quaternary system Ti-Ta-Al-C[J]. International Journal of Materials Research, 1983, 74(7): 468-472. [29] HAMM C M, DUERRSCHNABEL M, MOLINA-LUNA L, et al. Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC[J]. Materials Chemistry Frontiers, 2018, 2(3): 483-490. [30] CASPI E N, CHARTIER P, PORCHER F, et al. Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds[J]. Materials Research Letters, 2015, 3(2): 100-106. [31] PHATAK N A, SAXENA S K, FEI Y W, et al. Synthesis of a new MAX compound (Cr0.5V0.5)2GeC and its compressive behavior up to 49 GPa[J]. Journal of Alloys and Compounds, 2009, 475(1/2): 629-634. [32] LAI C C, TAO Q Z, FASHANDI H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC[J]. APL Materials, 2018, 6(2): 026104. [33] LIU Z, WAKI T, TABATA Y, et al. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC[J]. Physical Review B, 2014, 89(5): 054435. [34] INGASON A S, MOCKUTE A, DAHLQVIST M, et al. Magnetic self-organized atomic laminate from first principles and thin film synthesis[J]. Physical Review Letters, 2013, 110(19): 195502. [35] HAMM C M, BOCARSLY J D, SEWARD G, et al. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC[J]. Journal of Materials Chemistry C, 2017, 5(23): 5700-5708. [36] MOCKUTE A, PERSSON P O Å, MAGNUS F, et al. Synthesis and characterization of arc deposited magnetic (Cr, Mn)2AlC MAX phase films[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(5): 420-423. [37] GORSHKOV V A, KOVALEV D Y, BOYARCHENKO O D, et al. High-temperature synthesis of Cr-Mo-Al-C materials[J]. Inorganic Materials, 2021, 57(12): 1300-1306. [38] HALIM J, PALISAITIS J, LU J, et al. Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase[J]. ACS Applied Nano Materials, 2018, 1(6): 2455-2460. [39] SCHUSTER J C, NOWOTNY H. Investigations of the ternary systems (Zr, Hf, Nb, Ta)-Al-C and studies on complex carbides[J]. International Journal of Materials Research, 1980, 71(6): 341-346. [40] NAGUIB M, BENTZEL G W, SHAH J, et al. New solid solution MAX phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC[J]. Materials Research Letters, 2014, 2(4): 233-240. [41] LAPAUW T, TUNCA B, POTASHNIKOV D, et al. The double solid solution (Zr, Nb)2(Al, Sn)C MAX phase: a steric stability approach[J]. Scientific Reports, 2018, 8: 12801. [42] THÖRNBERG J, HALIM J, LU J, et al. Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2-xC MXene scrolls[J]. Nanoscale, 2019, 11(31): 14720-14726. [43] DAHLQVIST M, LU J, MESHKIAN R, et al. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering[J]. Science Advances, 2017, 3(7): e1700642. [44] LU J, THORE A, MESHKIAN R, et al. Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)2AlC i-MAX phase with M=Sc and Y[J]. Crystal Growth & Design, 2017, 17(11): 5704-5711. [45] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223. [46] CHEN L G, DAHLQVIST M, LAPAUW T, et al. Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC i-MAX phase[J]. Inorganic Chemistry, 2018, 57(11): 6237-6244. [47] TAO Q Z, DAHLQVIST M, LU J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J]. Nature Communications, 2017, 8: 14949. [48] MESHKIAN R, TAO Q Z, DAHLQVIST M, et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene[J]. Acta Materialia, 2017, 125: 476-480. [49] DAHLQVIST M, PETRUHINS A, LU J, et al. Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach[J]. ACS Nano, 2018, 12(8): 7761-7770. [50] TAO Q Z, LU J, DAHLQVIST M, et al. Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds[J]. Chemistry of Materials, 2019, 31(7): 2476-2485. [51] MESHKIAN R, DAHLQVIST M, LU J, et al. W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering[J]. Advanced Materials, 2018, 30(21): 1706409. [52] LU C J, PIVEN K, QI Q, et al. Substitution behavior of Si atoms in the Ti2AlC ceramics[J]. Acta Materialia, 2018, 144: 543-551. [53] DING H M, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts[J]. Materials Research Letters, 2019, 7(12): 510-516. [54] WANG Z Y, SUN J, XU B B, et al. Reducing the self-healing temperature of Ti2AlC MAX phase coating by substituting Al with Sn[J]. Journal of the European Ceramic Society, 2020, 40(1): 197-201. [55] ETZKORN J, ADE M, KOTZOTT D, et al. Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3[J]. Journal of Solid State Chemistry, 2009, 182(5): 995-1002. [56] YU W B, LI S B, SLOOF W G. Microstructure and mechanical properties of a Cr2Al(Si)C solid solution[J]. Materials Science and Engineering: A, 2010, 527(21/22): 5997-6001. [57] CABIOCH T, EKLUND P, MAUCHAMP V, et al. Tailoring of the thermal expansion of Cr2(Alx, Ge1-x)C phases[J]. Journal of the European Ceramic Society, 2013, 33(4): 897-904. [58] HORLAIT D, GRASSO S, CHRONEOS A, et al. Attempts to synthesise quaternary MAX phases (Zr, M)2AlC and Zr2(Al, A)C as a way to approach Zr2AlC[J]. Materials Research Letters, 2016, 4(3): 137-144. [59] HORLAIT D, MIDDLEBURGH S C, CHRONEOS A, et al. Synthesis and DFT investigation of new bismuth-containing MAX phases[J]. Scientific Reports, 2016, 6: 18829. [60] CABIOC’H T, EKLUND P, MAUCHAMP V, et al. Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx, N1-x)y compounds[J]. Journal of the European Ceramic Society, 2012, 32(8): 1803-1811. [61] KUBITZA N, REITZ A, ZIESCHANG A M, et al. From MAX phase carbides to nitrides: synthesis of V2GaC, V2GaN, and the carbonitride V2GaC1-xNx[J]. Inorganic Chemistry, 2022, 61(28): 10634-10641. [62] QU L S, BEI G P, STELZER B, et al. Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-xZrx)3SiC2 MAX phase solid solutions[J]. Ceramics International, 2019, 45(1): 1400-1408. [63] FANG Y, FENG Y X, LIU X H, et al. Influence of Mo doping on the tribological behavior of Ti3AlC2 ceramic at different temperatures[J]. Ceramics International, 2021, 47(18): 25520-25530. [64] ZHOU Y C, MENG F L, ZHANG J. New MAX-phase compounds in the V-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2008, 91(4): 1357-1360. [65] LIU Z M, ZHENG L Y, SUN L C, et al. (Cr2/3 Ti1/3)3 AlC2 and (Cr5/8 Ti3/8)4 AlC3: new MAX-phase compounds in Ti-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2014, 97(1): 67-69. [66] BURR P A, HORLAIT D, LEE W E. Experimental and DFT investigation of (Cr, Ti)3AlC2 MAX phases stability[J]. Materials Research Letters, 2017, 5(3): 144-157. [67] ZAPATA-SOLVAS E, HADI M A, HORLAIT D, et al. Synthesis and physical properties of (Zr1-x, Tix)3AlC2MAX phases[J]. Journal of the American Ceramic Society, 2017, 100(8): 3393-3401. [68] RIGBY-BELL M T P, NATU V, SOKOL M, et al. Synthesis of new M-layer solid-solution 312 MAX phases (Ta1-xTix)3AlC2 (x=0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes[J]. RSC Advances, 2021, 11(5): 3110-3114. [69] LIU Z M, WU E D, WANG J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase[J]. Acta Materialia, 2014, 73: 186-193. [70] ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): 094304. [71] GAO L N, LI S F, HAN T, et al. Microstructure, properties and fracture mechanism of MAX phase Ti3AlC2 ceramics with Si doping via Ti-Al-C system by powder metallurgy[J]. Journal of Materials Research and Technology, 2021, 15: 3663-3672. [72] GAO H L, BENITEZ R, SON W, et al. Structural, physical and mechanical properties of Ti3(Al1-xSix)C2 solid solution with x=0-1[J]. Materials Science and Engineering: A, 2016, 676: 197-208. [73] ZHANG H B, ZHOU Y C, BAO Y W, et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution[J]. Acta Materialia, 2004, 52(12): 3631-3637. [74] ZHOU Y C, CHEN J X, WANG J Y. Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions[J]. Acta Materialia, 2006, 54(5): 1317-1322. [75] GOU B B, WANG L L, YE B, et al. Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(10): 13081-13088. [76] NECHICHE M, CABIOC'H T, CASPI E N, et al. Evidence for symmetry reduction in Ti3(Al1-δCuδ)C2 MAX phase solid solutions[J]. Inorganic Chemistry, 2017, 56(23): 14388-14395. [77] FANG Y, LIU X H, ZHU J F, et al. Effect of Ga on the microstructure and mechanical properties of Ti3(Al1-x, Gax)C2[J]. Materials Science and Engineering: A, 2020, 771: 138651. [78] GANGULY A, ZHEN T, BARSOUM M W. Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x = 0.5, 0.75) solid solutions[J]. Journal of Alloys and Compounds, 2004, 376(1/2): 287-295. [79] BENTZEL G W, SOKOL M, GRIGGS J, et al. On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 ℃[J]. Journal of Alloys and Compounds, 2019, 771: 1103-1110. [80] BEI G P, GAUTHIER-BRUNET V, TROMAS C, et al. Synthesis, characterization, and intrinsic hardness of layered nanolaminate Ti3AlC2 and Ti3Al0.8Sn0.2C2 solid solution[J]. Journal of the American Ceramic Society, 2012, 95(1): 102-107. [81] DROUELLE E, BRUNET V, CORMIER J, et al. Oxidation resistance of Ti3 AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: a comparison[J]. Journal of the American Ceramic Society, 2020, 103(2): 1270-1280. [82] TIAN Z H, WU F S, HU P Y, et al. Synthesis of Ti3(SnxAl1-x)C2 solid solutions over the whole composition range[J]. Journal of Alloys and Compounds, 2022, 894: 162429. [83] CAI L P, HUANG Z Y, HU W Q, et al. Effects of Al substitution with Si and Sn on tribological performance of Ti3AlC2[J]. Ceramics International, 2021, 47(5): 6352-6361. [84] ZAPATA-SOLVAS E, CHRISTOPOULOS S R G, NI N, et al. Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2MAX phases[J]. Journal of the American Ceramic Society, 2017, 100(4): 1377-1387. [85] ETZKORN J, ADE M, HILLEBRECHT H. Ta3AlC2 and Ta4AlC3: single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorganic Chemistry, 2007, 46(4): 1410-1418. [86] MANOUN B, SAXENA S K, HUG G, et al. Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2[J]. Journal of Applied Physics, 2007, 101(11): 113523. [87] SCABAROZI T, GANGULY A, HETTINGER J D, et al. Electronic and thermal properties of Ti3Al(C0.5, N0.5)2, Ti2Al(C0.5, N0.5) and Ti2AlN[J]. Journal of Applied Physics, 2008, 104(7): 073713. [88] RADOVIC M, GANGULY A, BARSOUM M W. Elastic properties and phonon conductivities of Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5) solid solutions[J].Journal of Materials Research, 2008, 23(6): 1517-1521. [89] YANG J, NAGUIB M, GHIDIU M, et al. Two-dimensional Nb-based M4C3 solid solutions (MXenes)[J]. Journal of the American Ceramic Society, 2016, 99(2): 660-666. [90] GU J, PAN L M, YANG J, et al. Mechanical properties and oxidation behavior of Ti-doped Nb4AlC3[J]. Journal of the European Ceramic Society, 2016, 36(4): 1001-1008. [91] LAPAUW T, TYTKO D, VANMEENSEL K, et al. (Nbx, Zr1-x)4AlC3 MAX phase solid solutions: processing, mechanical properties, and density functional theory calculations[J]. Inorganic Chemistry, 2016, 55(11): 5445-5452. [92] LAPAUW T, SWARNAKAR A K, TUNCA B, et al. Nanolaminated ternary carbide (MAX phase) materials for high temperature applications[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 51-55. [93] SYCHEV A E, GORSHKOV V A, KARPOV A V, et al. Synthesis and properties of the composite material based on a (V, Cr)AlC solid solution[J]. Physics of Metals and Metallography, 2021, 122(3): 286-292. [94] HALIM J, CHARTIER P, BASYUK T, et al. Structure and thermal expansion of (Crx, V1-x)n+1AlCn phases measured by X-ray diffraction[J]. Journal of the European Ceramic Society, 2017, 37(1): 15-21. [95] YU W, MAUCHAMP V, CABIOC’H T, et al. Solid solution effects in the Ti2Al(CxNy) MAX phases: synthesis, microstructure, electronic structure and transport properties[J]. Acta Materialia, 2014, 80: 421-434. [96] ZHANG X, LI Y B, CHEN K, et al. Tailoring MAX phase magnetic property based on M-site and A-site double solid solution[J]. Journal of Inorganic Materials, 2021, 36(12): 1247. [97] TUNCA B, LAPAUW T, DELVILLE R, et al. Synthesis and characterization of double solid solution (Zr, Ti)2(Al, Sn)C MAX phase ceramics[J]. Inorganic Chemistry, 2019, 58(10): 6669-6683. [98] TUNCA B, HUANG S G, GOOSSENS N, et al. Chemically complex double solid solution MAX phase-based ceramics in the (Ti, Zr, Hf, V, Nb)-(Al, Sn)-C system[J]. Materials Research Letters, 2022, 10(2): 52-61. [99] CHEN Z H, CHONG H, SUN S L, et al. Synthesis and characterizations of solid-solution i-MAX phase (W1/3Mo1/3R1/3)2AlC (R=Gd, Tb, Dy, Ho, Er and Y) and derivated i-MXene with improved electrochemical properties[J]. Scripta Materialia, 2022, 213: 114596. [100] CHEN K, CHEN Y H, ZHANG J N, et al. Medium-entropy (Ti, Zr, Hf)2SC MAX phase[J]. Ceramics International, 2021, 47(6): 7582-7587. [101] LUO W, LIU Y, WANG C Y, et al. Molten salt assisted synthesis and electromagnetic wave absorption properties of (V1-x-yTixCry)2AlC solid solutions[J]. Journal of Materials Chemistry C, 2021, 9(24): 7697-7705. [102] LIU C, YANG Y Y, ZHOU Z F, et al. (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 2022, 105(4): 2764-2771. [103] DU Z G, WU C, CHEN Y C, et al. High-entropy atomic layers of transition-metal carbides (MXenes)[J]. Advanced Materials, 2021, 33(39): 2101473. [104] QIN Y, XIONG T, ZHAO T, et al. Mechanical properties and wear behavior of Tin+1(Al, A)Cn (A=Ga, In, Sn, n=1, 2) via quasi-high-entropy of single atomic thick A layer[J]. Ceramics International, 2021, 47(9): 12641-12650. [105] LI Y B, LU J, LI M, et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A) C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 820-825. [106] TUNCA B, LAPAUW T, CALLAERT C, et al. Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic[J]. Corrosion Science, 2020, 171: 108704. [107] LAI C C, PETRUHINS A, LU J, et al. Thermally induced substitutional reaction of Fe into Mo2GaC thin films[J]. Materials Research Letters, 2017, 5(8): 533-539. [108] MA W S, WANG M, YI Q J, et al. A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance[J]. Nano Energy, 2022, 96: 107129. [109] CAI L P, HUANG Z Y, HU W Q, et al. Dry sliding behaviors and friction surface characterization of Ti3Al0.8Si0.2Sn0.2C2 solid solution against S45C steel[J]. Ceramics International, 2019, 45(2): 2103-2110. [110] CAI L P, HUANG Z Y, HU W Q, et al. Fabrication and microstructure of a new ternary solid solution of Ti3Al0.8Si0.2Sn0.2C2 with high solid solution strengthening effect[J]. Ceramics International, 2018, 44(8): 9593-9600. [111] GRISERI M, TUNCA B, HUANG S G, et al. Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb[J]. Journal of the European Ceramic Society, 2020, 40(5): 1829-1838. [112] TAN Y Q, XIA Y H, TENG Z, et al. Synthesis and enhanced mechanical properties of compositionally complex MAX phases[J]. Journal of the European Ceramic Society, 2021, 41(8): 4658-4665. [113] ZHOU J, TAO Q Z, AHMED B, et al. High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene[J]. Chemistry of Materials, 2022, 34(5): 2098-2106. [114] HADI M A, NAQIB S H, CHRISTOPOULOS S R G, et al. Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase[J]. Journal of Alloys and Compounds, 2017, 724: 1167-1175. |
[1] | 张斌, 胡前库, 李丹丹, 王李波, 周爱国. 熔盐法制备三元层状MAX相陶瓷的研究进展[J]. 人工晶体学报, 2022, 51(6): 1132-1140. |
[2] | 邓斐然, 徐敏, 苗峰, 黄毅, 冯世全, 宋明泽, 肖晨达, 林园园, 李慧敏. Ti3(ZnxAl1-x)C2固溶体热学、电学和力学性质的理论研究[J]. 人工晶体学报, 2022, 51(3): 477-484. |
[3] | 李丹丹, 胡前库, 张斌, 王李波, 周爱国. 基于新元素和新多层结构的MAX相陶瓷材料研究进展[J]. 人工晶体学报, 2021, 50(12): 2379-2388. |
[4] | 张晓序, 张玲, 李凤友, 郑培毓, 李人骏. TiO2烧结助剂对纳米η-Al2O3制备Al2O3-Cr2O3固溶体的影响研究[J]. 人工晶体学报, 2020, 49(2): 319-324. |
[5] | 韩锐暄;赵彬侠;贺贝贝;骆海东;李志亮;邱爽;张小里. Bi2MoxW1-xO6固溶体的合成及其对RhB的光催化性能研究[J]. 人工晶体学报, 2018, 47(10): 2148-2154. |
[6] | 朱波;王雅静;汪燕鸣;孙登明;王飞. 溶剂热法合成LiMn1-xFexPO4纳米片及其电化学性能[J]. 人工晶体学报, 2016, 45(7): 1826-1831. |
[7] | 李辉;罗至利;刘哲;夏晓宇;韩旭旭;余鸿洋;孙国栋. 高压对Ti2AlX(X=C,N)结构、弹性和电子性质的影响[J]. 人工晶体学报, 2016, 45(10): 2406-2411. |
[8] | 吴洋;吴伯麟. 稀土Sm2O3对98氧化铝陶瓷耐磨性能的影响[J]. 人工晶体学报, 2015, 44(9): 2479-2483. |
[9] | 宋福生;李月明;沈宗洋;谢志翔;王竹梅;廖润华. Zn1-xMgxZrNb2O8微波介质陶瓷的结构与性能研究[J]. 人工晶体学报, 2015, 44(8): 2225-2230. |
[10] | 于方丽;白宇;张霞;韩朋德;管浩;倪澍;张长森. La2(Zr0.7Ce0.3)2O7纳米粉体的制备与表征[J]. 人工晶体学报, 2015, 44(5): 1213-1217. |
[11] | 张浩波;李勇;曹硕;孙永强;李燕京;高长贺. MgO-Al2O3-FeOn复相材料的高温蠕变性能研究[J]. 人工晶体学报, 2015, 44(12): 3622-3627. |
[12] | 赵臣;税安泽;李美澄;刘时剑;姚建城;陈秋群;黄诗耀. 络合法制备不同形貌的铈锆固溶体及其性能研究[J]. 人工晶体学报, 2014, 43(11): 2840-2845. |
[13] | 梁镇海;张文涛;张业. Sn1-x-yMnxSbyO2体系固溶体的相关系及形成机制[J]. 人工晶体学报, 2011, 40(1): 181-186. |
[14] | 张霞;焦宝祥;王威. Tm3+掺杂堇青石的制备及红外辐射性能研究[J]. 人工晶体学报, 2010, 39(5): 1329-1331. |
[15] | 石锋. Ba(Zn(1-x)/3Nix/3Nb2/3)O3微波介质陶瓷的微观结构[J]. 人工晶体学报, 2009, 38(2): 445-449. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||