[1] 董建明,张 波,刘 进,等.直拉法硅单晶生长中断棱与掉苞问题的探讨[J].材料导报,2013,27(S1):157-159. DONG J M, ZHANG B, LIU J, et al. Investigation on the growth problems in Cz-Si crystal[J]. Materials Review, 2013, 27(S1): 157-159(in Chinese). [2] 苏文佳,李九龙,杨 伟,等.直拉法单晶硅中位错影响因素研究进展[J].硅酸盐学报,2021,49(4):723-735. SU W J, LI J L, YANG W, et al. Research progress on influencing factors of dislocation in Czochralski silicon[J]. Journal of the Chinese Ceramic Society, 2021, 49(4): 723-735(in Chinese). [3] 裴志军,纪秀峰,刘 峰.4英寸<111>硅单晶制备中的“断棱”与“掉苞”问题[J].半导体杂志,1998(3):20-23. PEI Z J, JI X F, LIU F. Growth problems analysis of Ф100 mm <111> silicon single crystal[J]. Semiconductor Magazine, 1998(3): 20-23(in Chinese). [4] SATUNKIN G A. Mathematical modelling and control system design of Czochralski and liquid encapsulated Czochralski processes: the basic low order mathematical model[J]. Journal of Crystal Growth, 1995, 154(1/2): 172-188. [5] ARMAOU A, CHRISTOFIDES P D. Crystal temperature control in the Czochralski crystal growth process[J]. AIChE Journal, 2001, 47(1): 79-106. [6] LIU D, LIANG J L. A Bayesian approach to diameter estimation in the diameter control system of silicon single crystal growth[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1307-1315. [7] 黄伟超.多场作用下Cz法晶体生长过程建模与数值模拟[D].西安:西安理工大学,2018. HUANG W C. Modeling and numerical simulation of Czochralski crystal growth under multi-physical fields coupling[D]. Xian: Xian University of Technology, 2018(in Chinese). [8] KATO S, KIM S, KANO M, et al. Gray-box modeling of 300 mm diameter Czochralski single-crystal Si production process[J]. Journal of Crystal Growth, 2021, 553: 125929. [9] REN J C, LIU D, WAN Y. Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies[J]. Journal of Process Control, 2021, 104: 74-85. [10] 肖立志.机器学习数据驱动与机理模型融合及可解释性问题[J].石油物探,2022,61(2):205-212. XIAO L Z. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205-212(in Chinese). [11] 杜佳晨.基于数据挖掘的单晶硅等径生长过程“掉苞”预测方法研究[D].杭州:浙江大学,2019. DU J C. Research on “broken edge” prediction method for equal-diameter growth process of single crystal silicon based on data mining[D]. Hangzhou: Zhejiang University, 2019(in Chinese). [12] ZHANG J, LIU H, CAO J W, et al. A deep learning based dislocation detection method for cylindrical crystal growth process[J]. Applied Sciences, 2020, 10(21): 7799. [13] 赵华东,翟晓彤,田增国,等.基于MIC的Cz单晶硅放肩阶段关键特征参数辨识[J].人工晶体学报,2020,49(4):607-612. ZHAO H D, ZHAI X T, TIAN Z G, et al. Identification of key characteristic parameters of Cz-Si monocrystal during shoulder growth process based on MIC[J]. Journal of Synthetic Crystals, 2020, 49(4): 607-612(in Chinese). [14] 李欣鸽.CZ硅单晶等径生长阶段关键参数优化研究[D].郑州:郑州大学,2020. LI X G. Study on the optimization of key parameters of CZ single crystal in equal diameter growth stage[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese). [15] 黄 亮,彭 清,谢长君,等.基于差分进化优化的支持向量机燃料电池故障诊断[J].电源技术,2021,45(10):1316-1319. HUANG L, PENG Q, XIE C J, et al. Fuel cell fault diagnosis for support vector machines optimized based on differential evolution algorithm[J]. Chinese Journal of Power Sources, 2021, 45(10): 1316-1319(in Chinese). [16] 刘 鑫,韩 强,周永帅,等.基于GA优化SVM参数的白酒分类识别方法应用研究[J].包装与食品机械,2022,40(2):64-68. LIU X, HAN Q, ZHOU Y S, et al. Research on application of the classification and identification method of Baijiu based on GA optimized SVM parameters[J]. Packaging and Food Machinery, 2022, 40(2): 64-68(in Chinese). [17] 吴贵军,范鹏生,陈浩辰,等.基于深度学习的数据分类预测及应用[J].无线互联科技,2022,19(8):126-127. WU G J, FAN P S, CHEN H C, et al. Data classification prediction and application based on deep learning[J]. Wireless Internet Technology, 2022, 19(8): 126-127(in Chinese). [18] 高旭旭.基于深度学习的分类预测算法研究及实现[D].北京:北京邮电大学,2019. GAO X X. Research and application of classification prediction algorithms based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019(in Chinese). [19] XIAO C W, YE J Q, ESTEVES R M, et al. Using Spearmans correlation coefficients for exploratory data analysis on big dataset[J]. Concurrency and Computation: Practice and Experience, 2016, 28(14): 3866-3878. [20] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. [21] 周志华.机器学习[M].北京:清华大学出版社,2016. ZHOU Z H. Machine Learning[M].Beijing: Tsinghua University Press, 2006(in Chinese). [22] PRICE K V, STRON R M, LAMPINEN J. Differential evolution: a practical approach to global optimization[M]. Springer Science & Business Media, 2005. [23] HANCER E, XUE B, ZHANG M J. Differential evolution for filter feature selection based on information theory and feature ranking[J]. Knowledge-Based Systems, 2018, 140: 103-119. [24] ABUROMMAN A A, IBNE REAZ M B. A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems[J]. Information Sciences, 2017, 414: 225-246. [25] 牛 岩,魏雨露,刘思琪.数据标准化方法对SVM数据预测结果的影响研究[J].土地开发工程研究,2020,5(4):18-23. NIU Y, WEI Y L, LIU S Q. Research on the impact of data standardization methods on the data prediction results of SVM[J]. Land Development and Engineering Research, 2020, 5(4): 18-23(in Chinese). [26] ANOWAR F, SADAOUI S, SELIM B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)[J]. Computer Science Review, 2021, 40: 100378. |