[1] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. [2] 吴万鹏.基于COMSOL的声子晶体能带结构计算方法[D].天津:天津科技大学,2017. WU W P. Calculation method of band structure of phononic crystal base on COMSOL[D]. Tianjin: Tianjin University of Science & Technology, 2017(in Chinese). [3] 刘志明.声子晶体带隙特性研究[D].长沙:国防科学技术大学,2005. LIU Z M. Study on the characteristics of phononic crystal's bandgaps[D]. Changsha: National University of Defense Technology, 2005(in Chinese). [4] 贺子厚,赵静波,姚 宏,等.蜂窝状声子晶体带隙特性及隔振性能[J].硅酸盐学报,2019,47(7):983-989. HE Z H, ZHAO J B, YAO H, et al. Bandgaps and vibration isolation performance of honeycomb phononic crystal[J]. Journal of the Chinese Ceramic Society, 2019, 47(7): 983-989(in Chinese). [5] 彭中波,李 成,高 阳.基于二维三组元声子晶体带隙特性的振动研究[J].重庆交通大学学报(自然科学版),2020,39(8):134-138. PENG Z B, LI C, GAO Y. Vibration study based on the band gap characteristics of two-dimensional three-component phononic crystal[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(8): 134-138(in Chinese). [6] DONG Y K, YAO H, DU J, et al. Research on bandgap property of a novel small size multi-band phononic crystal[J]. Physics Letters A, 2019, 383(4): 283-288. [7] LI C, MIAO L C, YOU Q, et al. Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals[J]. Applied Physics A, 2019, 125(3): 170. [8] SIGMUND O, JAKOB S J. Systematic design of phononic band-gap materials and structures by topology optimization[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 361(1806): 1001-1019. [9] 钟会林,吴福根,姚立宁.遗传算法在二维声子晶体带隙优化中的应用[J].物理学报,2006,55(1):275-280. ZHONG H L, WU F G, YAO L N. Application of genetic algorithm in optimization of band gap of two-dimensional phononic crystals[J]. Acta Physica Sinica, 2006, 55(1): 275-280(in Chinese). [10] LIU Z F, WU B, HE C F. Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE[J]. Waves in Random and Complex Media, 2014, 24(3): 286-305. [11] 郭凯红,赵 铮,许卫锴.基于进化算法的一维多相声子晶体拓扑优化设计[J].人工晶体学报,2020,49(6):1083-1087. GUO K H, ZHAO Z, XU W K. Topology optimization design of one-dimensional multi-phase phononic crystals based on evolutionary algorithms[J]. Journal of Synthetic Crystals, 2020, 49(6): 1083-1087(in Chinese). [12] 许卫锴,宁金英,韩世超,等.考虑材料参数的二维固/固声子晶体拓扑优化设计[J].沈阳航空航天大学学报,2019,36(5):10-15. XU W K, NING J Y, HAN S C, et al. Topological optimization design of two-dimensional solid/solid phonon crystals considering material parameters[J]. Journal of Shenyang Aerospace University, 2019, 36(5): 10-15(in Chinese). [13] 董亚科,杜 军,姚 宏,等.基于智能算法的二维声子晶体最优结构设计[J].人工晶体学报,2015,44(11):3201-3204. DONG Y K, DU J, YAO H, et al. Optimal structure design of two-dimensional phononic crystal based on intelligent algorithm[J]. Journal of Synthetic Crystals, 2015, 44(11): 3201-3204(in Chinese). [14] CHEN L Y, GUO Y J, YI H. Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design[J]. Physics Letters A, 2021, 388: 127054. [15] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative Poisson ratio[J]. Physics Letters A, 1989, 137(1/2): 60-64. [16] SPADONI A, RUZZENE M. Structural and acoustic behavior of chiral truss-core beams[J]. Journal of Vibration and Acoustics, 2006, 128(5): 616-626. [17] SPADONI A. Dynamic response of chiral truss-core assemblies[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(11): 941-952. [18] TEE K F, SPADONI A, SCARPA F, et al. Wave propagation in auxetic tetrachiral honeycombs[J]. Journal of Vibration and Acoustics, 2010, 132(3): 031007. [19] 徐时吟,黄修长,华宏星.六韧带手性结构的能带特性[J].上海交通大学学报,2013,47(2):167-172. XU S Y, HUANG X C, HUA H X. Study on the band structure of hexagonal chiral structures[J]. Journal of Shanghai Jiao Tong University, 2013, 47(2): 167-172(in Chinese). [20] SPADONI A, RUZZENE M, GONELLA S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009, 46(7): 435-450. |