[1] 蒋 冲,王 一,丁 召,等.分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J].人工晶体学报,2021,50(2):283-289. JIANG C, WANG Y, DING Z, et al. Diffusion and nucleation of aluminum droplet on GaAs(001) surface during molecular beam epitaxy growth[J]. Journal of Synthetic Crystals, 2021, 50(2): 283-289(in Chinese). [2] 平 晨,贾志刚,董海亮,等.垒层温度对InGaN量子点/量子阱复合结构内量子效率的影响[J].人工晶体学报,2021,50(5):809-815+824. PING C, JIA Z G, DONG H L, et al. Effect of barrier temperature on internal quantum efficiency in GaN quantum dots/quantum well hybrid structure[J]. Journal of Synthetic Crystals, 2021, 50(5): 809-815+824(in Chinese). [3] 王 一,丁 召,魏节敏,等.In原子在GaAs(001)表面的成核与扩散研究[J].人工晶体学报,2020,49(12):2268-2273. WANG Y, DING Z, WEI J M, et al. Nucleation and diffusion of in atom on GaAs(001) surface[J]. Journal of Synthetic Crystals, 2020, 49(12): 2268-2273(in Chinese). [4] WANG L J, HE J F, SHANG X J, et al. Enhanced tunneling in the GaAs p+-n+ junction by embedding InAs quantum dots[J]. Semiconductor Science and Technology, 2012, 27(11): 115010. [5] YUAN Q, LIU J T, LIANG B L, et al. Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots[J]. Journal of Luminescence, 2020, 218: 116870. [6] WANG G D, LIANG B L, JUANG B C, et al. Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots[J]. Nanotechnology, 2016, 27(46): 465701. [7] MILLA M J, ULLOA J M, GUZMÁN A. Photoexcited-induced sensitivity of InGaAs surface QDs to environment[J]. Nanotechnology, 2014, 25(44): 445501. [8] MUKAI K, NAKATA Y, OTSUBO K, et al. High characteristic temperature of near-1.3-μm InGaAs/GaAs quantum-dot lasers at room temperature[J]. Applied Physics Letters, 2000, 76(23): 3349-3351. [9] DROZDOWICZ-TOMSIA K, GOLDYS E M, FU L, et al. Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2006, 89(11): 113510. [10] LU H F, FU L, JOLLEY G, et al. Temperature dependence of dark current properties of InGaAs/GaAs quantum dot solar cells[J]. Applied Physics Letters, 2011, 98(18): 183509. [11] WANG Z M, MAZUR Y I, SEYDMOHAMADI S, et al. Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots[J]. Applied Physics Letters, 2005, 87(21): 213105. [12] CHEN M X, KOBASHI K. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units[J]. Journal of Applied Physics, 2012, 112(6): 064903. [13] WANG G D, JI H Q, SHEN J L, et al. Strong influence of temperature and vacuum on the photoluminescence of In0.3Ga0.7As buried and surface quantum dots[J]. Photonic Sensors, 2018, 8(3): 213-219. [14] WANG G D, LIU Z G, WANG J J, et al. Gas sensitivity of In0.3Ga0.7As surface QDs coupled to multilayer buried QDs[J]. Photonic Sensors, 2020, 10(3): 283-290. [15] MANNA S, HUANG H Y, DA SILVA S F C, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360. [16] LIN A, LIANG B L, DOROGAN V G, et al. Strong passivation effects on the properties of an InAs surface quantum dot hybrid structure[J]. Nanotechnology, 2013, 24(7): 075701. [17] LIANG B L, WANG Z M, MAZUR Y I, et al. Correlation between surface and buried InAs quantum dots[J]. Applied Physics Letters, 2006, 89(4): 043125. [18] LIU J T, LUO S P, LIU X H, et al. Carrier injection to In0.4Ga0.6As/GaAs surface quantum dots in coupled hybrid nanostructures[J]. Crystals, 2022, 12(3): 319. [19] YANG X G, WANG K F, GU Y X, et al. Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping[J]. Solar Energy Materials and Solar Cells, 2013, 113: 144-147. [20] WANG K F, GU Y X, YANG X G, et al. Si delta doping inside InAs/GaAs quantum dots with different doping densities[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(4): 041808. [21] LIANG B L, MAZUR Y I, KUNETS V P, et al. Enhanced photoluminescence from InAs/GaAs surface quantum dots by using a Si-doped interlayer[J]. Nanotechnology, 2008, 19(6): 065705. [22] LV Z R, ZHANG Z K, YANG X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping[J]. Applied Physics Letters, 2018, 113(1): 011105. [23] ZHANG Z Y, JUNG D, NORMAN J C, et al. Effects of modulation p doping in InAs quantum dot lasers on silicon[J]. Applied Physics Letters, 2018, 113(6): 061105. [24] WANG H, LV Z R, ZHANG Z K, et al. Enhanced performance of InAs/GaAs quantum dot superluminescent diodes by direct Si-doping[J]. AIP Advances, 2020, 10(4): 045202. [25] LIU X H, LIU J T, LIANG B L, et al. Type-II characteristics of photoluminescence from InGaAs/GaAs surface quantum dots due to Fermi level pinning effect[J]. Applied Surface Science, 2022, 578: 152066. [26] WANG H L, YANG F H, FENG S L. Photoluminescence in Si and Be directly doped self-organized InAs/GaAs quantum dots[J]. Journal of Crystal Growth, 2000, 212(1/2): 35-38. [27] NAH J. Growth and characterization of Si-doped self-assembled InAs quantum dots[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005, 23(3): 1047. [28] PARK Y M, PARK Y J, KIM K M, et al. Effects of Si-doped GaAs layer on optical properties of InAs quantum dots[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25(4): 647-653. [29] YUAN Q, LIANG B L, ZHOU C, et al. Interplay effect of temperature and excitation intensity on the photoluminescence characteristics of InGaAs/GaAs surface quantum dots[J]. Nanoscale Research Letters, 2018, 13(1): 387. [30] NILSSON H H, ZHANG J Z, GALBRAITH I. Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers[J]. 2005, 72(20): 205331. [31] USKOV A V, MCINERNEY J, ADLER F, et al. Auger carrier capture kinetics in self-assembled quantum dot structures[J]. Applied Physics Letters, 1998, 72(1): 58-60. [32] JIN S R, ZHENG Y L, LI A Z. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures[J]. Journal of Applied Physics, 1997, 82(8): 3870-3873. [33] WANG Y, SHENG X Z, YUAN Q, et al. Carrier dynamics in hybrid nanostructure with electronic coupling from an InGaAs quantum well to InAs quantum dots[J]. Journal of Luminescence, 2018, 202: 20-26. [34] ALONSO-ÁLVAREZ D, ALÉN B, GARCÍA J M, et al. Optical investigation of type II GaSb/GaAs self-assembled quantum dots[J]. Applied Physics Letters, 2007, 91(26): 263103. [35] KLENOVSKY' P, STEINDL P, GEFFROY D. Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots[J]. Scientific Reports, 2017, 7: 45568. [36] LU G Z, LV Z R, ZHANG Z K, et al. Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots[J]. Chinese Physics B, 2021, 30(1): 017802. |