[1] SHINADA T, OKAMOTO S, KOBAYASHI T, et al. Enhancing semiconductor device performance using ordered dopant arrays[J]. Nature, 2005, 437(7062): 1128-1131. [2] MORARU D, UDHIARTO A, ANWAR M, et al. Atom devices based on single dopants in silicon nanostructures[J]. Nanoscale Research Letters, 2011, 6(1): 479. [3] MA D M, CHENG J N, ZHANG J L, et al. The influence of the Cu doping position on GaAs: first-principles calculations[J]. Materials Today Communications, 2020, 25: 101549. [4] TIAN J, LIU L, LU F F. Theoretical research on p-type doping two-dimensional GaN based on first-principles study[J]. International Journal of Energy Research, 2020, 44(7): 6058-6067. [5] LI B, CHANG B K, XU Y, et al. Research and development of GaN photocathode[J]. Acta Physica Sinica, 2011, 60(8): 088503. [6] DU Y J, CHANG B K, FU X Q, et al. Electronic structure and optical properties of zinc-blende GaN[J]. Optik, 2012, 123(24): 2208-2212. [7] WANG Y J, LU W. AlGaN/GaN FET for DNA hybridization detection[J]. Physica Status Solidi (a), 2011, 208(7): 1623-1625. [8] PANG L, KIM K K. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors[J]. Journal of Physics D: Applied Physics, 2012, 45(4): 045105. [9] HSU C S, CHEN H I, CHANG C F, et al. On the hydrogen sensing characteristics of a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)[J]. Sensors and Actuators B: Chemical, 2012, 165(1): 19-23. [10] SHIH H A, KUDO M, AKABORI M, et al. Application of sputtering-deposited AlN films to gate dielectric for AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistor[J]. Japanese Journal of Applied Physics, 2012, 51(2S): 02BF01. [11] KIM D S, IM K S, KANG H S, et al. Normally-off AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with recessed gate and p-GaN back-barrier[J]. Japanese Journal of Applied Physics, 2012, 51: 034101. [12] HASS BAR-ILAN A, ZAMIR S, KATZ O, et al. GaN layer growth optimization for high power devices[J]. Materials Science and Engineering: A, 2001, 302(1): 14-17. [13] DRIDI Z, BOUHAFS B, RUTERANA P. First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1-xN, InxGa1-xN and InxAl1-xN alloys[J]. Semiconductor Science and Technology, 2003, 18(9): 850-856. [14] LEE S R, WRIGHT A F, CRAWFORD M H, et al. The band-gap bowing of AlxGa1-xN alloys[J]. Applied Physics Letters, 1999, 74(22): 3344-3346. [15] YUN F, RESHCHIKOV M A, HE L, et al. Growth of GaN films on porous SiC substrate by molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(22): 4142-4144. [16] JI Y J, DU Y J, WANG M S. First-principles studies of electronic structure and optical properties of GaN surface doped with Si[J]. Optik, 2014, 125(10): 2234-2238. [17] JANI O, HONSBERG C, ASGHAR A, et al. Characterization and analysis of InGaN photovoltaic devices[C]//Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference. January 3-7, 2005, Lake Buena Vista, FL, USA. IEEE, 2005: 37-42. [18] JANI O, FERGUSON I, HONSBERG C, et al. Design and characterization of GaN/InGaN solar cells[J]. Applied Physics Letters, 2007, 91(13): 132117. [19] FAN Q Y, CHAI C C, WEI Q, et al. A new phase of GaN[J]. Journal of Chemistry, 2016: 1-9. [20] ZHANG Z R, CHAI C C, ZHANG W, et al. First-principles study on Ⅲ-nitride polymorphs: AlN/GaN/InN in the Pmn21 phase[J]. Materials, 2020, 13(14): 3212. [21] SCHULZ H, THIEMANN K H. Crystal structure refinement of AlN and GaN[J]. Solid State Communications, 1977, 23(11): 815-819. [22] FAN Q Y, CHAI C C, WEI Q, et al. Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature[J]. Chinese Journal of Physics, 2017, 55(2): 400-411. [23] TIMON V, BRAND S, CLARK S J, et al. Ab initio studies of strained wurtzite GaN surfaces[J]. Journal of Physics: Condensed Matter, 2004, 16(4): 531-542. [24] TIMON V, BRAND S, CLARK S J, et al. First-principles calculations of 2×2 reconstructions of GaN(0001) surfaces involving N, Al, Ga, In, and As atoms[J]. Physical Review B, 2005, 72(3): 035327. [25] SHAKIL M, MASOOD M K, ZAFAR M, et al. Theoretical study of structural, electronic and optical properties of InxGa1-xN alloys[J]. Optik, 2018, 174: 739-747. [26] SHIEH C C, CUI X Y, DELLEY B, et al. Built-in electric fields and valence band offsets in InN/GaN(0001) superlattices: first-principles investigations[J]. Journal of Applied Physics, 2011, 109(8): 083721. [27] LAREF A, ALTUJAR A, LUO S J. The electronic and optical properties of InGaN-based solar cells alloys: first-principles investigations via mBJLDA approach[J]. The European Physical Journal B, 2013, 86(11): 475. [28] MARUSKA H P, TIETJEN J J. The preparation and properties of vapor-deposited single-crystal-line GaN[J]. Applied Physics Letters, 1969, 15(10): 327-329. [29] ZHANG Q D, ZOU Y C, FAN Q Y, et al. Physical properties of XN (X=B, Al, Ga, In) in the Pm-3n phase: first-principles calculations[J]. Materials, 2020, 13(6): 1280. [30] YU X H, DU Y J, CHANG B K, et al. Study on the electronic structure and optical properties of different Al constituent Ga1-xAlxAs[J]. Optik, 2013, 124(20): 4402-4405. [31] ZHAO Z C, YANG C L, WANG M S, et al. Effect of Ti doping on mechanical and optical properties of super-hard I2d-CN2 materials[J]. RSC Advances, 2017, 7(60): 37943-37951. [32] YANG Y X, WANG Z G. A two-dimensional MoS2/C3N broken-gap heterostructure, a first principles study[J]. RSC Advances, 2019, 9(34): 19837-19843. [33] XUE S Q, ZHANG F C, ZHANG S L, et al. Electronic and magnetic properties of Ni-doped zinc-blende ZnO: a first-principles study[J]. Nanomaterials (Basel, Switzerland), 2018, 8(5): 281. [34] DEL SOLE R, GIRLANDA R. Optical properties of semiconductors within the independent-quasiparticle approximation[J]. Physical Review B, Condensed Matter, 1993, 48(16): 11789-11795. [35] BAO L K, KONG Z Z, QU D Y, et al. Insight of structural stability, elastic anisotropies and thermal conductivities of Y, Sc doped Mg2Pb from first-principles calculations[J]. Chemical Physics Letters, 2020, 756: 137833. [36] LIU T Y, MA T Y, LI Y M, et al. Stabilities, mechanical and thermodynamic properties of Al-RE intermetallics: a first-principles study[J]. Journal of Rare Earths, 2022, 40(2): 345-352. [37] DING L P, SHAO P, ZHANG F H, et al. Prediction of molybdenum nitride from first-principle calculations: crystal structures, electronic properties, and hardness[J]. The Journal of Physical Chemistry C, 2018, 122(36): 21039-21046. [38] FAN Q Y, CHAI C C, WEI Q, et al. Novel silicon allotropes: stability, mechanical, and electronic properties[J]. Journal of Applied Physics, 2015, 118(18): 185704. [39] CHEN H C, YANG L J, LONG J P. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds[J]. Superlattices and Microstructures, 2015, 79: 156-165. |