[1] CHANG J, NULL Y C, FU M. First-principles calculations of thermodynamic properties of superhard orthorhombic β-BC2N[J]. Journal of Atomic and Molecular Sciences, 2022, 1(3): 243-252. [2] WENTORF R H. Cubic form of boron nitride[J]. The Journal of Chemical Physics, 1957, 26(4): 956. [3] ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks[J]. Journal of Materials Research, 2002, 17(12): 3139-3145. [4] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10): 1385-1387. [5] SUN H, JHI S H, ROUNDY D, et al. Structural forms of cubic BC2N[J]. Physical Review B, 2001, 64(9): 094108. [6] ZHANG Y, SUN H, CHEN C F. Superhard cubic BC2N compared to diamond[J]. Physical Review Letters, 2004, 93(19): 195504. [7] GUO X J, LIU Z Y, LUO X G, et al. Theoretical hardness of the cubic BC2N[J]. Diamond and Related Materials, 2007, 16(3): 526-530. [8] LI Q, ZHOU D, WANG H, et al. Crystal and electronic structures of superhard B2CN: an ab initio study[J]. Solid State Communications, 2012, 152(2): 71-75. [9] NAKANO S, AKAISHI M, SASAKI T, et al. Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa[J]. Chemistry of Materials, 1994, 6(12): 2246-2251. [10] ZHOU X F, SUN J, FAN Y X, et al. Most likely phase of superhard BC2N by ab initio calculations[J]. Physical Review B, 2007, 76(10): 100101. [11] 王军朋,李 凤,敖 靖,等.新型超硬材料z-BC2N的弹性、硬度与热导率研究[J].无机材料学报,2015,30(5):467-473. WANG J P, LI F, AO J, et al. Investigation of elastic properties, hardness and thermal conductivity of new superhard material z-BC2N[J]. Journal of Inorganic Materials, 2015, 30(5): 467-473(in Chinese). [12] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. [13] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569. [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [15] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, Condensed Matter, 1990, 41(11): 7892-7895. [16] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [17] BROYDEN C G. The convergence of a class of double-rank minimization algorithms 1. general considerations[J]. IMA Journal of Applied Mathematics, 1970, 6(1): 76-90. [18] FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322. [19] GOLDFARB D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computation, 1970, 24(109): 23-26. [20] SHANNO D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656. [21] SUN J, ZHOU X F, QIAN G R, et al. Chalcopyrite polymorph for superhard BC2N[J]. Applied Physics Letters, 2006, 89(15): 151911. [22] 陈志谦,李春梅,王 瑨,等.几种BC2N超硬材料力学性能与电子结构的理论研究[J].中国科学:物理学 力学 天文学,2013,43(2):142-151. CHEN Z Q, LI C M, WANG J, et al. Theoretical study of mechanical properties and electronic structures of several BC2N superhard materials[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(2): 142-151(in Chinese). [23] CORKILL J L, COHEN M L. Calculated quasiparticle band gap of β-C3N4[J]. Physical Review B, 1993, 48(23): 17622-17624. [24] 陈志谦,李春梅,李冠男,等.材料的设计、模拟与计算: CASTEP的原理及其应用[M].北京:科学出版社,2019. CHEN Z Q, LI C M, LI G N, et al. Design, simulation and calculation of materials: principles and applications of CASTEP[M]. Beijing: Science Press, 2019(in Chinese). [25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504. [26] CHUNG D H, BUESSEM W R. The elastic anisotropy of crystals[J]. Journal of Applied Physics, 1967, 38(5): 2010-2012. [27] CHEN Z Q, PENG Y S, HU M, et al. Elasticity, hardness, and thermal properties of ZrBn(n=1, 2, 12)[J]. Ceramics International, 2016, 42(6): 6624-6631. [28] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106. [29] GUO X J, LI L, LIU Z Y, et al. Hardness of covalent compounds: roles of metallic component and d valence electrons[J]. Journal of Applied Physics, 2008, 104(2): 023503. [30] 张旭昀,张正江,孙丽丽,等.超硬B-C-N化合物晶体和电子结构的第一性原理研究[J].人工晶体学报,2013,42(6):1181-1186. ZHANG X Y, ZHANG Z J, SUN L L, et al. First-principles calculations on crystal and electronic structures of B-C-N superhard compounds[J]. Journal of Synthetic Crystals, 2013, 42(6): 1181-1186(in Chinese). [31] 潘 磊,卢铁城,苏 锐,等.γ-AlON晶体电子结构和光学性质研究[J].物理学报,2012,61(2):027101. PAN L, LU T C, SU R, et al. Study of electronic structure and optical propertise of γ-AION crystal[J]. Acta Physica Sinica, 2012, 61(2): 027101(in Chinese). |