欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (2): 354-362.

• 研究论文 • 上一篇    下一篇

微米及纳米WC-Co基BDD污水处理电极的制备研究

张韬1,2, 薛喆3, 万方1, 张天颖1, 彭广盼1, 黄国栋1   

  1. 1.无锡职业技术学院机械技术学院,无锡 214122;
    2.上海海洋大学工程学院,上海 201306;
    3.张家港市微纳新材料科技有限公司,苏州 215699
  • 收稿日期:2022-10-14 出版日期:2023-02-15 发布日期:2023-03-08
  • 作者简介:张韬(1984—),女,宁夏回族自治区人,博士,副教授。E-mail:zhangt@wxit.edu.cn
  • 基金资助:
    江苏省自然科学基金(BK20201142);国家青年自然科学基金(51605280)

Preparation of Micro- and Nano-WC-Co/BDD Electrodes for Wastewater Treatment

ZHANG Tao1,2, XUE Zhe3, WAN Fang1, ZHANG Tianying1, PENG Guangpan1, HUANG Guodong1   

  1. 1. Mechanical Institute of Technology, Wuxi Institute of Technology, Wuxi 214122, China;
    2. School of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
    3. Zhangjiagang Weina New Materials Technology Co., Ltd., Suzhou 215699, China
  • Received:2022-10-14 Online:2023-02-15 Published:2023-03-08

摘要: 硼掺杂金刚石(BDD)是高级氧化法污水处理领域的一种电极材料,其衬底材料的选择是电极涂层制备的核心问题之一,良好的衬底材料可提高膜基结合力,从而延长电极的使用寿命。本文提出以热膨胀系数较小的WC-Co为衬底,采用热丝化学气相沉积(HFCVD)法制备微米、纳米两种表面形貌的BDD电极,并利用场发射扫描电子显微镜(FE-SEM)、拉曼光谱、X射线光电子能谱(XPS)、循环伏安法对两种电极的物理性能、表面状态及电化学性能进行表征,研究结果表明:在沉积速率方面,微米薄膜是纳米薄膜的1.5倍,但纳米薄膜具有更小的残余应力,仅为-0.6 GPa;两种电极在0.5 mol/L的H2SO4溶液中均展现较宽的电化学窗口(约为3.7~3.9 V)和极小的背景电流,在K3[Fe(CN)6]氧化还原系统中表现出良好的准可逆特性,这些特性均与常规Si、Nb、Ti基BDD电极相似。在此基础上,本文对两种电极开展了苯酚模拟废水处理和加速寿命试验(ALT),结果显示:相同参数下,纳米电极在ALT中使用寿命约为423 h,明显优于微米电极的310 h;在苯酚氧化实验中,两种电极对苯酚均展现了较好的矿化效果,化学需氧量(COD)处理的电流效率为88%~94%,与标准BDD电极相接近。因此,WC-Co或可作为BDD污水处理电极的良好衬底材料。

关键词: BDD电极, WC-Co, HFCVD, 电化学, 难降解有机废水

Abstract: Boron-doped diamond (BDD) is an electrode material applied in advanced oxidation technology for wastewater treatment, the choice of its substrate material is one of the key considerations for making electrode coating. The appropriate substrate material enhances the adhesion of the film to the substrate and then lengthens the service life of the electrode. In this work, cemented carbide (WC-Co) which has a low coefficient of thermal expansion is employed as the substrate, and microcrystalline and nanocrystalline BDD films are prepared by hot filament chemical vapor deposition (HFCVD). The two types of WC-Co/BDD electrodes were investigated by field emission scanning electron microscopy (FE-SEM), micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetric. During the fixed deposition time, the growth rate of microcrystalline films is 1.5 times that of nanocrystalline films, and the residual stress of microcrystalline films (1.7 GPa) is greater than that of nanocrystalline films (-0.6 GPa). The two varieties of WC-Co/BDD electrodes exhibit a wide potential window greater than 3.7 V and featureless background current in 0.5 mol/L H2SO4 solution; they have a quasi-reversible behavior in the K3[Fe(CN)6] redox system, which are similar to conventional Si, Nb, Ti based BDD electrodes. Subsequently, the electrodes were characterized by replicated experiments for oxidating phenol and an accelerated life test (ALT). The results show that the lifetime of the nano-electrode (about 423 h) is clearly superior to that of the micro-electrode (about 310 h) when identical conditions are used in the ALT. In the phenol oxidation experiments, both electrodes show a good mineralization impact on phenol; the current efficiency of the micro-electrode and nano-electrode are 88%~94%, which is close to standard BDD electrode. As a result, WC-Co might be an appropriate substrate for the BDD electrodes in wastewater treatment applications.

Key words: BDD electrode, WC-Co, HFCVD, electrochemistry, refractory organic wastewater

中图分类号: