[1] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chemical Society Reviews, 2021, 50(13): 7745-7778. [2] LIU F Y, WANG M Y, LIU X L, et al. A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis[J]. Nano Letters, 2021, 21(4): 1643-1650. [3] LIANG J H, CHEN D, YAO X, et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications[J]. Small, 2020, 16(15): e1903398. [4] PAN J H, LIANG J H, XU Z X, et al. Rationally designed ternary CdSe/WS2/g-C3N4 hybrid photocatalysts with significantly enhanced hydrogen evolution activity and mechanism insight[J]. International Journal of Hydrogen Energy, 2021, 46(59): 30344-30354. [5] KRANZ C, WÄCHTLER M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes[J]. Chemical Society Reviews, 2021, 50(2): 1407-1437. [6] WANG M J, SHI B, ZHANG Q X, et al. Integrated and unassisted solar water-splitting system by monolithic perovskite/silicon tandem solar cell[J]. Solar RRL, 2022, 6(2): 2100748. [7] LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603(7899): 73-78. [8] HOU S J, KLUGE R M, HAID R W, et al. A review on experimental identification of active sites in model bifunctional electrocatalytic systems for oxygen reduction and evolution reactions[J]. ChemElectroChem, 2021, 8(18): 3433-3456. [9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. [10] WANG B, WANG M Y, LIU F Y, et al. Ti3 C2: an ideal Co-catalyst?[J]. Angewandte Chemie, 2020, 59(5): 1914-1918. [11] GAO F, HE J Q, WANG H W, et al. Te-mediated electro-driven oxygen evolution reaction[J]. Nano Research Energy, 2022, 1: e9120029. [12] LIU X, CHEN K, LI X Y, et al. Electron matters: recent advances in passivation and applications of black phosphorus[J]. Advanced Materials, 2021, 33(50): e2005924. [13] ZHANG Q Z, HUANG S Y, DENG J J, et al. Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution[J]. Advanced Functional Materials, 2019, 29(28): 1902486. [14] WU T, DONG C L, SUN D, et al. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts[J]. Nanoscale, 2021, 13(3): 1581-1595. [15] CHANG Y K, NIE A M, YUAN S J, et al. Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis[J]. Nanotechnology, 2019, 30(3): 035701. [16] WU T, ZHANG S N, BU K J, et al. Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(38): 22063-22069. [17] LI X Y, XIAO L P, ZHOU L, et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting[J]. Angewandte Chemie, 2020, 59(47): 21106-21113. [18] WANG X, RAGHUPATHY R K M, QUEREBILLO C J, et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions[J]. Advanced Materials, 2021, 33(20): e2008752. [19] YU L, ZHOU H Q, SUN J Y, et al. Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core-shell electrocatalyst for efficient oxygen evolution[J]. Journal of Materials Chemistry A, 2018, 6(28): 13619-13623. [20] YU F, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nature Communications, 2018, 9(1): 1-9. [21] GUO Z N, ZHANG H, LU S B, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002. [22] HANLON D, BACKES C, DOHERTY E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6(1): 1-11. [23] ZHU M S, OSAKADA Y, KIM S, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 217: 285-292. [24] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. [25] WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521. [26] YIN J L, LEE H U, PARK J Y. An electrodeposited graphite oxide/cobalt hydroxide/chitosan ternary composite on nickel foam as a cathode material for hybrid supercapacitors[J]. RSC Advances, 2016, 6(41): 34801-34808. [27] ZHANG Q X, LI T T, LIANG J H, et al. Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7509-7516. [28] WU B, GONG S, LIN Y C, et al. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water[J]. Advanced Materials, 2022, 34(43): e2108619. [29] ZHU M S, ZHAI C Y, FUJITSUKA M, et al. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2[J]. Applied Catalysis B: Environmental, 2018, 221: 645-651. [30] FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis[J]. Advanced Materials, 2021, 33(6): e1907818. [31] NING P, LIANG J H, LI L H, et al. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport[J]. Journal of Colloid and Interface Science, 2021, 590: 407-414. [32] LIANG J H, TAN H R, LIU M, et al. A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16841-16848. |