[1] AMANO H, IWAYA M, KASHIMA T, et al. Stress and defect control in GaN using low temperature interlayers[J]. Japanese Journal of Applied Physics, 1998, 37(12B): L1540. [2] SELVARAJ S L, WATANABE A, WAKEJIMA A, et al. 1.4-kV breakdown voltage for AlGaN/GaN high-electron-mobility transistors on silicon substrate[J]. IEEE Electron Device Letters, 2012, 33(10): 1375-1377. [3] ROWENA I B, SELVARAJ S L, EGAWA T. Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si[J]. IEEE Electron Device Letters, 2011, 32(11): 1534-1536. [4] CHRISTY D, EGAWA T, YANO Y, et al. Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate[J]. Applied Physics Express, 2013, 6(2): 026501. [5] RAGHAVAN S, REDWING J. Growth stresses and cracking in GaN films on (111) Si grown by metalorganic chemical vapor deposition. II. Graded AlGaN buffer layers[J]. Journal of Applied Physics, 2005, 98(2): 023515. [6] RAGHAVAN S, WENG X J, DICKEY E, et al. Correlation of growth stress and structural evolution during metalorganic chemical vapor deposition of GaN on (111) Si[J]. Applied Physics Letters, 2006, 88(4): 041904. [7] SCHOLLHORN C, ZHAO W W, MORSCHBACH M, et al. Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon[J]. IEEE Transactions on Electron Devices, 2003, 50(3): 740-746. [8] LUONG T T, LUMBANTORUAN F, CHEN Y Y, et al. RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: role of an inversion channel at the AlN/Si interface[J]. Physica Status Solidi (a), 2017, 214(7): 1600944. [9] CHANG S N, ZHAO M, SPAMPINATO V, et al. The influence of AlN nucleation layer on radio frequency transmission loss of AlN-on-Si heterostructure[J]. Physica Status Solidi (a), 2020, 217(7): 1900755. [10] MAUDER C, HAHN H, MARX M, et al. Investigation and reduction of RF loss induced by Al diffusion at the AlN/Si(111) interface in GaN-based HEMT buffer stacks[J]. Semiconductor Science and Technology, 2021, 36(7): 075008. [11] ZHAN X N, LIU J X, SUN X J, et al. Crack-free 2.2 μm-thick GaN grown on Si with a single-layer AlN buffer for RF device applications[J]. Journal of Physics D: Applied Physics, 2023, 56(1): 015104. [12] REISER K, TWYNAM J, BRECH H, et al. Increased RF-losses at the GaN/Si interface after eutectic die attach[C]//2019 14th European Microwave Integrated Circuits Conference (EuMIC). September 30-October 1, 2019, Paris, France. IEEE, 2019: 196-199. [13] CAO L N, LO C F, MARCHAND H, et al. Coplanar waveguide performance comparison of GaN-on-Si and GaN-on-SiC substrates[C]//2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). October 22-25, 2017, Miami, FL, USA. IEEE, 2017: 1-4. [14] PATTISON L, BOLES T, TUFFY N, et al. Improving GaN on Si power amplifiers through reduction of parasitic conduction layer[C]//2014 9th European Microwave Integrated Circuit Conference. October 6-7, 2014, Rome, Italy. IEEE, 2014: 92-95. [15] MEDJDOUB F, ZEGAOUI M, GRIMBERT B, et al. First demonstration of high-power GaN-on-silicon transistors at 40 GHz[J]. IEEE Electron Device Letters, 2012, 33(8): 1168-1170. [16] HOSHI S, ITOH M, MARUI T, et al. 12.88 W/mm GaN high electron mobility transistor on silicon substrate for high voltage operation[J]. Applied Physics Express, 2009, 2: 061001. [17] GHOSH S, HINZ A, FAIRCLOUGH S M, et al. Origin(s) of anomalous substrate conduction in MOVPE-grown GaN HEMTs on highly resistive silicon[J]. ACS Applied Electronic Materials, 2021, 3(2): 813-824. [18] MATSUMOTO K, ONO T, HONDA Y, et al. Origin of acceptor diffusion into silicon substrate during GaN growth by metal organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2019, 58(7): 075502. [19] BERBER F, JOHNSON D W, SUNDQVIST K M, et al. RF dielectric loss due to MOCVD aluminum nitride on high resistivity silicon[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1465-1470. [20] CHANDRASEKAR H, UREN M J, CASBON M A, et al. Quantifying temperature-dependent substrate loss in GaN-on-Si RF technology[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1681-1687. [21] MA C, YANG X L, SHEN J F, et al. Low RF loss and low dislocation density of GaN grown on high-resistivity Si substrates[J]. Applied Physics Express, 2022, 15(3): 031003. [22] YACOUB H, FAHLE D, FINKEN M, et al. The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices[J]. Semiconductor Science and Technology, 2014, 29(11): 115012. [23] WEI L, YANG X L, SHEN J F, et al. Al diffusion at AlN/Si interface and its suppression through substrate nitridation[J]. Applied Physics Letters, 2020, 116(23): 232105. [24] CHANG S N, ZHAO M, SPAMPINATO V, et al. The influence of AlN nucleation layer on RF transmission loss of GaN buffer on high resistivity Si (111) substrate[J]. Semiconductor Science and Technology, 2020, 35(3): 035029. [25] FRAYSSINET E, NGUYEN L, LESECQ M, et al. Metalorganic chemical vapor phase epitaxy growth of buffer layers on 3C-SiC/Si(111) templates for AlGaN/GaN high electron mobility transistors with low RF losses[J]. Physica Status Solidi (a), 2020, 217(7): 1900760. [26] MARINO F A, FARALLI N, PALACIOS T, et al. Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors[J]. IEEE Transactions on Electron Devices, 2010, 57(1): 353-360. [27] ŤAPAJNA M, KAUN S W, WONG M H, et al. Influence of threading dislocation density on early degradation in AlGaN/GaN high electron mobility transistors[J]. Applied Physics Letters, 2011, 99(22): 223501. [28] CAI Z D, YANG X L, MA C, et al. Ultralow-supersaturation Al pretreatment toward low dislocation density and low radio frequency loss GaN/AlN epi-stacks on high-resistivity Si substrates[J]. ACS Applied Electronic Materials, 2022, 4(8): 4113-4118. [29] LECOURT F, DOUVRY Y, DEFRANCE N, et al. Analysis of AlGaN/GaN epi-material on resistive Si(111) substrate for MMIC applications in millimeter wave range[C]//The 5th European Microwave Integrated Circuits Conference. September 27-28, 2010, Paris, France. IEEE, 2010: 33-36. [30] LIU D S, YANG X L, ZHANG X, et al. Low radio frequency loss and buffer-free GaN directly on physical-vapor-deposition AlN/Si templates[J]. Applied Physics Express, 2022, 15(8): 081001. |