[1] DAY J, LI J, LIE D Y C, et al. III-Nitride full-scale high-resolution microdisplays[J]. Applied Physics Letters, 2011, 99(3): 031116. [2] JIN D U, LEE J S, KIM T W, et al. 65.2: distinguished paper: world-largest (6.5″) flexible full color top emission AMOLED display on plastic film and its bending properties[J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 983-985. [3] LI L Z, LIU C B, SU Y Z, et al. Micro-LEDs: heterogeneous integration of microscale GaN light-emitting diodes and their electrical, optical, and thermal characteristics on flexible substrates[J]. Advanced Materials Technologies, 2018, 3(1): 1870005. [4] CHEN C J, CHEN H C, LIAO J H, et al. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display[J]. IEEE Journal of Quantum Electronics, 2019, 55(2): 1-6. [5] WU T Z, SHER C W, LIN Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 2018, 8(9): 1557. [6] LEE H E, LEE D, LEE T I, et al. Wireless powered wearable micro light-emitting diodes[J]. Nano Energy, 2019, 55: 454-462. [7] LAN H Y, TSENG I C, LIN Y H, et al. High-speed integrated micro-LED array for visible light communication[J]. Optics Letters, 2020, 45(8): 2203-2206. [8] LIN J Y, JIANG H X. Development of microLED[J]. Applied Physics Letters, 2020, 116(10): 100502. [9] HORNG R H, CHIANG C C, HSIAO H Y, et al. Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders[J]. Applied Physics Letters, 2008, 93(11): 111907. [10] MAY B J, SARWAR A T M G, MYERS R C. Nanowire LEDs grown directly on flexible metal foil[J]. Applied Physics Letters, 2016, 108(14): 141103. [11] YULIANTO N, KADJA G T M, BORNEMANN S, et al. Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips[J]. ACS Applied Electronic Materials, 2021, 3(2): 778-788. [12] CHEN Y, XIE B, LONG J Y, et al. Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator[J]. Advanced Materials, 2021, 33(44): 2104290. [13] LIU L, EDGAR J H. Substrates for gallium nitride epitaxy[J]. Materials Science and Engineering: R: Reports, 2002, 37(3): 61-127. [14] YULIANTO N, REFINO A D, SYRING A, et al. Wafer-scale transfer route for top-down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique[J]. Microsystems & Nanoengineering, 2021, 7(1): 1-15. [15] PARK J, SIN Y G, KIM J H, et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation[J]. Applied Surface Science, 2016, 384: 353-359. [16] SUN W G, JI L F, LIN Z Y, et al. Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device[J]. Advanced Functional Materials, 2022, 32(8): 2111920. [17] ZHOU H, XU Y, CHEN X W, et al. Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene[J]. Journal of Alloys and Compounds, 2020, 844: 155870. [18] ZHU Y H, WANG M Y, SHI M, et al. Correlation on GaN epilayer quality and strain in GaN-based LEDs grown on 4-in. Si(111) substrate[J]. Superlattices and Microstructures, 2015, 85: 798-805. [19] DOAN M H, KIM S, LEE J J, et al. Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes[J]. AIP Advances, 2012, 2(2): 022122. [20] LEI Y, WAN H, TANG B, et al. Optical characterization of GaN-based vertical blue light-emitting diodes on p-type silicon substrate[J]. Crystals, 2020, 10(7): 621. |