[1] JASINSKI R. A summary of patents on organic electrolyte batteries[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 26(2/3): 189-194. [2] ZHOU L, YANG L C, YUAN P, et al. α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21868-21872. [3] HORNEBECQ V, MASTAI Y, ANTONIETTI M, et al. Redox behavior of nanostructured molybdenum oxide-mesoporous silica hybrid materials[J]. Chemistry of Materials, 2003, 15(19): 3586-3593. [4] SAJI V S, LEE C W. Molybdenum, molybdenum oxides, and their electrochemistry[J]. ChemSusChem, 2012, 5(7): 1146-1161. [5] JI F X, REN X P, ZHENG X Y, et al. 2D-MoO3 nanosheets for superior gas sensors[J]. Nanoscale, 2016, 8(16): 8696-8703. [6] CHITHAMBARARAJ A, SANJINI N S, BOSE A C, et al. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catalysis Science & Technology, 2013, 3(5): 1405-1414. [7] HUANG L Y, XU H, ZHANG R X, et al. Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity[J]. Applied Surface Science, 2013, 283: 25-32. [8] MA W L, ALONSO-GONZÁLEZ P, LI S J, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 2018, 562(7728): 557-562. [9] HU G W, OU Q D, SI G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. [10] HU H, CHEN N, TENG H C, et al. Gate-tunable negative refraction of mid-infrared polaritons[J]. Science, 2023, 379(6632): 558-561. [11] KOWALCZYK D A, ROGALA M, SZAŁOWSKI K, et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44506-44515. [12] ALAM M H, CHOWDHURY S, ROY A, et al. Wafer-scalable single-layer amorphous molybdenum trioxide[J]. ACS Nano, 2022, 16(3): 3756-3767. [13] KIM H S, COOK J B, LIN H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4): 454-460. [14] GUO H C, GOONETILLEKE D, SHARMA N, et al. Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries[J]. Cell Reports Physical Science, 2020, 1(10): 100225. [15] DU Y G, LI G Q, PETERSON E W, et al. Iso-oriented monolayer α-MoO3(010) films epitaxially grown on SrTiO3(001)[J]. Nanoscale, 2016, 8(5): 3119-3124. [16] GUIMOND S, GÖBKE D, STURM J M, et al. Well-ordered molybdenum oxide layers on Au(111): preparation and properties[J]. The Journal of Physical Chemistry C, 2013, 117(17): 8746-8757. [17] DIXIT D, RAMACHANDRAN B, CHITRA M, et al. Photochromic response of the PLD-grown nanostructured MoO3 thin films[J]. Applied Surface Science, 2021, 553: 149580. [18] SHI M L, CHEN L, ZHANG T B, et al. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability[J]. Small, 2017, 13(35): 10.1002/smll.201603157. [19] DISKUS M, NILSEN O, FJELLVÅG H. Growth of thin films of molybdenum oxide by atomic layer deposition[J]. Journal of Materials Chemistry, 2011, 21(3): 705-710. [20] DISKUS M, NILSEN O, FJELLVÅG H, et al. Combination of characterization techniques for atomic layer deposition MoO3coatings: from the amorphous to the orthorhombic α-MoO3 crystalline phase[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(1): 01A107. [21] CAUDURO A L F, DOS REIS R, CHEN G, et al. Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7717-7724. [22] ARITA M, KAJI H, FUJII T, et al. Resistance switching properties of molybdenum oxide films[J]. Thin Solid Films, 2012, 520(14): 4762-4767. [23] KIM J H, DASH J K, KWON J, et al. Van der Waals epitaxial growth of single crystal α-MoO3 layers on layered materials growth templates[J]. 2D Materials, 2018, 6(1): 015016. [24] KIM J H, HYUN C, KIM H, et al. Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling[J]. Nano Letters, 2019, 19(12): 8868-8876. [25] BIENER M M, BIENER J, SCHALEK R, et al. Growth of nanocrystalline MoO3 on Au(111) studied by in situ scanning tunneling microscopy[J]. The Journal of Chemical Physics, 2004, 121(23): 12010-12016. [26] QUEK S Y, BIENER M M, BIENER J, et al. Tuning electronic properties of novel metal oxide nanocrystals using interface interactions: MoO3 monolayers on Au(111)[J]. Surface Science, 2005, 577(2/3): L71-L77. [27] DENG X Y, QUEK S Y, BIENER M M, et al. Selective thermal reduction of single-layer MoO3 nanostructures on Au(111)[J]. Surface Science, 2008, 602(6): 1166-1174. [28] WU Q H, ZHAO Y Q, HONG G, et al. Electronic structure of MoO3-x/graphene interface[J]. Carbon, 2013, 65: 46-52. [29] KOWALCZYK D A, ROGALA M, SZAŁOWSKI K, et al. Local electronic structure of stable monolayers of α-MoO3-x grown on graphite substrate[J]. 2D Materials, 2021, 8(2): 025005. [30] MEYER J, KIDAMBI P R, BAYER B C, et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes[J]. Scientific Reports, 2014, 4(1): 1-7. [31] DAS T, TOSONI S, PACCHIONI G. Structural and electronic properties of bulk and ultrathin layers of V2O5 and MoO3[J]. Computational Materials Science, 2019, 163: 230-240. [32] GUO Y, MA L, MAO K K, et al. Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility[J]. Nanoscale Horizons, 2019, 4(3): 592-600. |