[1] 刘欣蔚, 陈美华. CVD合成钻石工艺中种晶预处理及其后期处理研究进展[J]. 超硬材料工程, 2018, 30(6): 59-66. LIU X W, CHEN M H. Research progress of seed crystal pretreatment and post-treatment in CVD diamond synthesis process[J]. Superhard Material Engineering, 2018, 30(6): 59-66 (in Chinese). [2] SKORDARIS G, BOUZAKIS K D, KOTSANIS T, et al. Effect of the crystallinity of diamond coatings on cemented carbide inserts on their cutting performance in milling[J]. CIRP Annals-Manufacturing Technology, 2019, 68(1): 65-68. [3] 王嘉铭, 徐向前, 刘 瑞, 等. 金刚石在未来电网中的应用展望[J]. 微纳电子技术, 2017, 54(3): 150-156. WANG J M, XU X Q, LIU R, et al. Prospects of the diamond application in future power grids[J]. Micronanoelectronic Technology, 2017, 54(3): 150-156 (in Chinese). [4] 席耀辉. 掺硼金刚石薄膜的制备、修饰及应用性能研究[D]. 郑州: 郑州大学, 2017. XI Y H. Study on preparation, modification and application properties of boron-doped diamond films[D]. Zhengzhou: Zhengzhou University, 2017 (in Chinese). [5] 张旺玺. 化学气相沉积法合成金刚石的研究进展[J]. 陶瓷学报, 2021, 42(4): 537-546. ZHANG W X. Research progress in synthesis of diamond prepared with chemical vapour deposition (CVD)[J]. Journal of Ceramics, 2021, 42(4): 537-546 (in Chinese). [6] 付方彬, 金 鹏, 刘雅丽, 等. MPCVD生长半导体金刚石材料的研究现状[J]. 微纳电子技术, 2016, 53(9)571-581+587 FU F B, JIN P, LIU Y L, et al. Research status of the semiconductor diamond materials grown by the MPCVD[J]. Micronanoelectronic Technology, 2016, 53(9)571-581+587 (in Chinese). [7] LU P, GOMEZ H, XIAO X C, et al. Coating thickness and interlayer effects on CVD-diamond film adhesion to cobalt-cemented tungsten carbides[J]. Surface and Coatings Technology, 2013, 215: 272-279. [8] FHANER M, ZHAO H, BIAN X C, et al. Improvements in the formation of boron-doped diamond coatings on platinum wires using the novel nucleation process (NNP)[J]. Diamond and Related Materials, 2011, 20(2): 75-83. [9] ISSAOUI R, ACHARD J, TALLAIRE A, et al. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices[J]. Applied Physics Letters, 2012, 100(12): 122109-1. [10] GROTJOHN T A, TRAN D T, YARAN M K, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface[J]. Diamond and Related Materials, 2014, 44: 129-133. [11] 刘向红. n型掺杂金刚石的第一性原理研究[D]. 济南: 山东大学, 2011. LIU X H. First-principles study on N-doped diamond[D]. Jinan: Shandong University, 2011 (in Chinese). [12] SATO K, KATSURA T. Sulfur: a new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions[J]. Journal of Crystal Growth, 2001, 223(1/2): 189-194. [13] CHEN N, MA H A, CHEN L X, et al. Effects of S on the synthesis of type Ib diamond under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 141-146. [14] HAUBNER R, ULLRAM S. Influence of H2S addition during diamond deposition on hardmetal substrates[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1100-1105. [15] NOSE K, SUWA T, FUJITA R, et al. Crystallinity and electrical conductivity of sulfur-containing microcrystalline diamond thin film[J]. Thin Solid Films, 2012, 520(13): 4310-4313. [16] NISHITANI-GAMO M, YASU E J, XIAO C Y, et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 941-947. [17] LV S J, HONG S, YUAN C, et al. Selenium and tellurium: elemental catalysts for conversion of graphite to diamond under high pressure and temperature[J]. Applied Physics Letters, 2009, 95: 242105. [18] ULLAH M, AHMED E, HUSSAIN F, et al. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations[J]. Applied Surface Science, 2015, 334: 40-44. [19] 简小刚, 杨培康, 黄 新, 等. 硼掺杂和氮掺杂金刚石的吸附生长过程研究[J]. 人工晶体学报, 2020, 49(4): 592-599. JIAN X G, YANG P K, HUANG X, et al. Study on the adsorption growth process of B-doped and N-doped diamonds[J]. Journal of Synthetic Crystals, 2020, 49(4): 592-599 (in Chinese). [20] 简小刚, 甘熠华. 碳氢基团在孕镶金刚石表面吸附作用的机理研究[J]. 人工晶体学报, 2018, 47(4): 680-686. JIAN X G, GAN Y H. Mechanism study of hydrocarbon groups absorption on PDC substrate surface[J]. Journal of Synthetic Crystals, 2018, 47(4): 680-686 (in Chinese). [21] 简小刚, 王俊鹏, 何嘉诚. 不同反应气氛下氢终止金刚石表面的活化性能[J]. 人工晶体学报, 2019, 48(3): 436-442. JIAN X G, WANG J P, HE J C. Surface activation properties of the hydrogen-terminated diamond in different reaction atmospheres[J]. Journal of Synthetic Crystals, 2019, 48(3): 436-442 (in Chinese). [22] CHEN B S, LI Y Z, GUAN X Y, et al. First-principles study of structural, elastic and electronic properties of ZrIr alloy[J]. Computational Materials Science, 2015, 105: 66-70. [23] 孙士阳, 迟中波, 徐平平, 等. 金刚石(111)/Al界面形成及性能的第一性原理研究[J]. 物理学报, 2021, 70(18): 188101. SUN S Y, CHI Z B, XU P P, et al. First-principles study of formation and performance of diamond (111)/Al interface[J]. Acta Physica Sinica, 2021, 70(18): 188101 (in Chinese). [24] 胡盛志, 谢兆雄, 周朝晖. 晶体范德华半径的70年[J]. 物理化学学报, 2010, 26(7): 1795-1800. HU S Z, XIE Z X, ZHOU Z H. 70 years of crystallographic van der Waals radii[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1795-1800 (in Chinese). [25] SUN B, ZHANG X, LIN Z. Growth mechanism and the order of appearance of diamond (111) and (100) facets[J]. Physical Review B, Condensed Matter, 1993, 47(15): 9816-9824. [26] PAN J W, LI C, ZHAO Y F, et al. Electronic properties of TiO2 doped with Sc, Y, La, Zr, Hf, V, Nb and Ta[J]. Chemical Physics Letters, 2015, 628: 43-48. |