人工晶体学报 ›› 2023, Vol. 52 ›› Issue (7): 1169-1194.
• 大尺寸激光晶体材料制备的关键技术与应用研究 • 上一篇 下一篇
王萌萌1, 尹延如1, 丁晓圆1, 张晶2, 付秀伟1, 贾志泰1,3, 陶绪堂1
收稿日期:
2023-06-25
出版日期:
2023-07-15
发布日期:
2023-08-16
通信作者:
尹延如,博士,实验师。E-mail:yyr@sdu.edu.cn
作者简介:
王萌萌(2001—),女,山东省人,硕士研究生。E-mail:wmm11@mail.sdu.edu.cn
基金资助:
WANG Mengmeng1, YIN Yanru1, DING Xiaoyuan1, ZHANG Jing2, FU Xiuwei1, JIA Zhitai1,3, TAO Xutang1
Received:
2023-06-25
Online:
2023-07-15
Published:
2023-08-16
摘要: 倍半氧化物具有优异的热学性能、稳定的物化性能、低的最大声子能量和强的晶体场,是理想的高功率、大能量激光基质材料。倍半氧化物具有超高熔点,因此其高质量、大尺寸的晶体制备极其困难,研究人员对此进行了长期的研究探索。近年激光技术发展对高品质倍半氧化物单晶的迫切需求促使相关晶体的生长技术取得了突破。本文在简单介绍倍半氧化物性能与结构的基础上,详细综述了Lu2O3、Sc2O3、Y2O3倍半氧化物晶体的生长方法及缺陷种类,系统总结了稀土离子掺杂的倍半氧化物在1~3 μm波段内的激光性能,最后对其未来的研究与发展方向进行了展望。
中图分类号:
王萌萌, 尹延如, 丁晓圆, 张晶, 付秀伟, 贾志泰, 陶绪堂. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展[J]. 人工晶体学报, 2023, 52(7): 1169-1194.
WANG Mengmeng, YIN Yanru, DING Xiaoyuan, ZHANG Jing, FU Xiuwei, JIA Zhitai, TAO Xutang. Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1169-1194.
[1] ZINKEVICH M. Thermodynamics of rare earth sesquioxides[J]. Progress in Materials Science, 2007, 52(4): 597-647. [2] TANG M, VALDEZ J A, LU P, et al. A cubic-to-monoclinic structural transformation in the sesquioxide Dy2O3 induced by ion irradiation[J]. Journal of Nuclear Materials, 2004, 328(1): 71-76. [3] WANG L, PAN Y X, DING Y, et al. High-pressure induced phase transitions of Y2O3 and Y2O3∶Eu3+[J]. Applied Physics Letters, 2009, 94(6): 061921. [4] HUSSON E, PROUST C, GILLET P, et al. Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy[J]. Materials Research Bulletin, 1999, 34(12/13): 2085-2092. [5] PETERS R, PETERMANN K, HUBER G. Growth technology and laser properties of Yb-doped sesquioxides[M]//Crystal Growth Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 267-282. [6] KOOPMANN P. Thulium- and holmium-doped sesquioxides for 2 μm Lasers [M]. 1st ed. Aachen: Shaker, 2012 [7] TOKURAKAWA M, SHIRAKAWA A, UEDA K, et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+: sesquioxide single crystal lasers[J]. Optics Express, 2011, 19(4): 2904-2909. [8] ZELMON D E, NORTHRIDGE J M, HAYNES N D, et al. Temperature-dependent Sellmeier equations for rare-earth sesquioxides[J]. Applied Optics, 2013, 52(16): 3824-3828. [9] BEIL K, SARACENO C J, SCHRIBER C, et al. Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup[J]. Applied Physics B, 2013, 113(1): 13-18. [10] MCMILLEN C D, SANJEEWA L D, MOORE C A, et al. Crystal growth and phase stability of Ln∶Lu2O3 (Ln=Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in a higher-temperature hydrothermal regime[J]. Journal of Crystal Growth, 2016, 452: 146-150. [11] MCMILLEN C, THOMPSON D, TRITT T, et al. Hydrothermal single-crystal growth of Lu2O3 and lanthanide-doped Lu2O3[J]. Crystal Growth & Design, 2011, 11(10): 4386-4391. [12] SPEZIA G. Contribuzioni sperimentali alla cristallogenesi del quarzo [J]. Atti Accad Sci Torino, 1906, 41: 158-65. [13] MCMILLEN C D, KOLIS J W. Bulk single crystal growth from hydrothermal solutions[J]. Philosophical Magazine, 2012, 92(19/20/21): 2686-2711. [14] MC MILLEN C D, KOLIS J W. Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1939-1942. [15] MANN M, KOLIS J. Hydrothermal crystal growth of yttrium and rare earth stabilized hafnia[J]. Journal of Crystal Growth, 2010, 312(3): 461-465. [16] KOLAMBAGE M T K, MCMILLEN C D, MCGUIRE M A, et al. Hydrothermal synthesis of lanthanide rhenium oxides: structures and magnetism of Ln2Re2O7(OH) (Ln=Pr, Nd) and Ln4Re2O11 (Ln=Eu, Tb)[J]. Journal of Solid State Chemistry, 2019, 275: 149-158. [17] VEBER P, VELÁZQUEZ M, JUBERA V, et al. Flux growth of Yb3+-doped RE2O3 (RE=Y, Lu) single crystals at half their melting point temperature[J]. CrystEngComm, 2011, 13(16): 5220. [18] DRUON F, VELÁZQUEZ M, VEBER P, et al. Laser demonstration with highly doped Yb∶Gd2O3 and Yb∶Y2O3 crystals grown by an original flux method[J]. Optics Letters, 2013, 38(20): 4146-4149. [19] VEBER P, VELÁZQUEZ M, GADRET G, et al. Flux growth at 1230 ℃ of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties[J]. CrystEngComm, 2015, 17(3): 492-497. [20] VELÁZQUEZ M, VEBER P, BUŞE G, et al. Spectroscopic properties of newly flux grown and highly Yb3+-doped cubic RE2O3 (RE=Y, Gd, Lu) laser crystals[J]. Optical Materials, 2015, 39: 258-264. [21] VEBER P, VELAZQUEZ M, DOUISSARD P A, et al. Flux growth and physical properties characterizations of Y1 866Eu0 134O3 and Lu156Gd041Eu003O3 single crystals[J]. Optical Materials Express, 2015, 6(1): 207. [22] FORNASIERO L, MIX E, PETERS V, et al. New oxide crystals for solid state lasers[J]. Crystal Research and Technology, 1999, 34(2): 255-260. [23] FORNASIERO L, MIX E, PETERS V, et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3[J]. Ceramics International, 2000, 26(6): 589-592. [24] KRÄNKEL C, UVAROVA A, HAURAT É, et al. Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu2O3-Sc2O3-Y2O3[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2021, 77(4): 550-558. [25] SUZUKI A, KALUSNIAK S, et al. Spectroscopy and 2.1 μm laser operation of Czochralski-grown Tm3+∶YScO3 crystals[J]. Optics Express, 2022, 30(23): 42762. [26] 穆文祥. β-Ga2O3单晶的生长、加工及性能研究[D]. 济南: 山东大学, 2018. MU W X. Growth, processing and properties of β-Ga2O3 single crystal[D].Jinan: Shandong University, 2018 (in Chinese). [27] LABELLE H E. EFG, the invention and application to sapphire growth[J]. Journal of Crystal Growth, 1980, 50(1): 8-17. [28] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573. [29] ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 μm[J]. Applied Optics, 2023, 62(6): 1462-1466. [30] 王贵吉, 丁晓圆, 尹延如, 等. Dy3+∶Lu2O3中红外激光晶体的导模法生长及其光学性质[J]. 发光学报, 2022, 43(11): 1808-1814. WANG G J, DING X Y, YIN Y R, et al. Guided mode growth and optical properties of Dy3+∶Lu2O3 mid-infrared laser crystal[J]. Chinese Journal of Luminescence, 2022, 43(11): 1808-1814 (in Chinese). [31] 王贵吉, 尹延如, 贾志泰, 等. Er∶Lu2O3单晶的导模法生长及性能表征[J]. 人工晶体学报, 2021, 50(4): 747-751+756. WANG G J, YIN Y R, JIA Z T, et al. Growth and property characterization of Er∶Lu2O3 single crystals by EFG method[J]. Journal of Synthetic Crystals, 2021, 50(4): 747-751+756 (in Chinese). [32] SCHMID F, VIECHNICKI D. Growth of sapphire disks from the melt by a gradient furnace technique[J]. Journal of the American Ceramic Society, 1970, 53(9): 528-529. [33] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237/238/239: 879-883. [34] PETERS V. Growth and spectroscopy of ytterbium-doped sesquioxides [D]. Hamburg: University of Hamburg, 2001. [35] PETERS R, KRÄNKEL C, PETERMANN K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb: Lu2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1934-1938. [36] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24. [37] LOIKO P A, YUMASHEV K V, SCHÖDEL R, et al. Thermo-optic properties of Yb∶Lu2O3 single crystals[J]. Applied Physics B, 2015, 120(4): 601-607. [38] HU K W, ZHENG L L, ZHANG H. Control of interface shape during high melting sesquioxide crystal growth by HEM technique[J]. Journal of Crystal Growth, 2018, 483: 175-182. [39] 赵衡煜, 侯文涛, 薛艳艳, 等. 高熔点稀土倍半氧化钪(Sc2O3)晶体的生长[J]. 人工晶体学报, 2021, 50(4): 732-734. ZHAO H Y, HOU W T, XUE Y Y, et al. Growth of high melting point rare earth sesquioxide scandium oxide crystal (Sc2O3)[J]. Journal of Synthetic Crystals, 2021, 50(4): 732-734 (in Chinese). [40] PETROV V, PETERMANN K, GRIEBNER U, et al. Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, F May 01, 2006. [41] PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments [J]. Optical Materials, 2002, 19(1): 67-71. [42] ZHENG J Q, LIU C J, YU H H, et al. Single crystal preparation and luminescent properties of Lu2O3∶Eu scintillator by vertical bridgman method[J]. Crystal Research and Technology, 2022, 57(2): 2100120. [43] FUKABORI A, CHANI V, KAMADA K, et al. Growth of Y2O3, Sc2O3 and Lu2O3 crystals by the micro-pulling-down method and their optical and scintillation characteristics [J]. Journal of Crystal Growth, 2011, 318(1): 823-830. [44] NOVOSELOV A, MUN J H, SIMURA R, et al. Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides[J]. Inorganic Materials, 2007, 43(7): 729-734. [45] MUN J H, NOVOSELOV A, YOSHIKAWA A, et al. Growth of Yb3+-doped Y2O3 single crystal rods by the micro-pulling-down method[J]. Materials Research Bulletin, 2005, 40(8): 1235-1243. [46] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334. [47] KECK P H, GOLAY M J E. Crystallization of silicon from a floating liquid zone[J]. Physical Review, 1953, 89(6): 1297. [48] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104. [49] 刘文宇. 掺镱倍半氧化物固溶体混晶的生长及其光谱展宽性能研究[D]. 济南: 山东大学, 2020. LIU W Y. Growth and spectral broadening properties of ytterbium-doped sesquioxide solid solution mixed crystals[D].Jinan: Shandong University, 2020 (in Chinese). [50] 郝良振. 掺钕氧化镥激光晶体生长及其性能研究[D]. 济南: 山东大学, 2012. HAO L Z. Growth and properties of Nd-doped lutetium oxide laser crystal[D].Jinan: Shandong University, 2012 (in Chinese). [51] SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy∶Lu2O3 for yellow laser[J]. Chinese Physics B, 2018, 27(7): 077802. [52] ZHUANG L C, FENG H, HUANG S M, et al. The luminescent properties comparison of RE2O3∶Eu(RE=Lu, Y, Sc) with high and low Eu doping concentrations[J]. Journal of Alloys and Compounds, 2019, 781: 302-307. [53] HOU W T, ZHAO H Y, LI N, et al. Growth and spectroscopic properties of Er∶Lu2O3 crystal grown by floating zone method[J]. Materials Research Express, 2019, 6(6): 066203. [54] LI S M, ZHANG L H, TAN X J, et al. Growth, structure, and spectroscopic properties of a Tm3+, Ho3+ co-doped Lu2O3 crystal for ~2.1 μm[J]. Optical Materials, 2019, 96: 109277. [55] LIU W Y, LU D Z, PAN S L, et al. Ligand engineering for broadening infrared luminescence of Kramers ytterbium ions in disordered sesquioxides[J]. Crystal Growth & Design, 2019, 19(7): 3704-3713. [56] UVAROVA A, KALUSNIAK S, GUGUSCHEV C, et al. OFZ-growth of Yb∶(Sc, Y)2O3 for 1 μm lasers[C]//2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). June 21-25, 2021, Munich, Germany. IEEE, 2021: 1. [57] CHEN G Z, LI S M, FANG Q N, et al. Growth and spectroscopy of Er∶LuYO3 single crystal[J]. Journal of Luminescence, 2021, 239: 118347. [58] WANG L, LIU X D, LI J S, et al. Effect of rare-earth (RE) ionic radius on the dielectric properties of Sr99%RE1%TiO3 (RE=La, Nd, Yb) single crystals[J]. CrystEngComm, 2023, 25(1): 95-107. [59] GRUBER J B, SARDAR D K, NASH K L, et al. Comparative study of the crystal-field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide[J]. Journal of Applied Physics, 2007, 102(2): 023103. [60] GRUBER J B, SARDAR D K, NASH K L, et al. Spectral analysis of synthesized nanocrystalline aggregates of Er3+∶Y2O3[J]. Journal of Applied Physics, 2007, 101(11): 113116. [61] 王 磊. Y2O3单晶体及光子晶体的制备与性能研究[D]. 沈阳: 东北大学, 2017. WANG L. Preparation and properties of Y2O3 single crystals and photonic crystals[D].Shenyang: Northeastern University, 2017 (in Chinese). [62] 周文平, 牛 微, 刘旭东, 等. 硅酸镥单晶体生长方法研究[J]. 沈阳工程学院学报(自然科学版), 2015, 11(1): 86-89. ZHOU W P, NIU W, LIU X D, et al. Study on growth method of Ce∶Lu2SiO5 single crystals[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2015, 11(1): 86-89 (in Chinese). [63] HERRICK C C, BEHRENS R G. Growth of large uraninite and thorianite single crystal from the melt using a cold-crucible technique[J]. Journal of Crystal Growth, 1981, 51(2): 183-189. [64] XU J Y, LEI X Y, JIANG X, et al. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process[J]. Journal of Rare Earths, 2009, 27(6): 971-974. [65] BORIK M A, BREDIKHIN S I, KULEBYAKIN A V, et al. Melt growth, structure and properties of (ZrO2)1-x(Sc2O3)x solid solution crystals (x=0.035 0.11)[J]. Journal of Crystal Growth, 2016, 443: 54-61. [66] OSIKO V V, BORIK M A, LOMONOVA E E. Synthesis of refractory materials by skull melting technique[M]//DHANARAJ G, BYRAPPA K, PRASAD V, et al. Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer, 2010: 433-477. [67] ZHANG N, YIN Y Q, ZHANG J A, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7): 1657-1662. [68] 王 涛, 贾志泰, 李 阳, 等. 单晶光纤制备及高温传感器研究进展[J]. 人工晶体学报, 2021, 50(9): 1603-1624. WANG T, JIA Z T, LI Y, et al. Single-crystal fiber growth and single-crystal fiber high-temperature sensors: review and perspective[J]. Journal of Synthetic Crystals, 2021, 50(9): 1603-1624 (in Chinese). [69] ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. Journal of Alloys and Compounds, 2021, 889: 161348. [70] BERARD M F, WIRKUS C D, WILDER D R. Diffusion of oxygen in selected monocrystalline rare earth oxides. Journal of the American Ceramic Society, 1968, 51(11): 643-647. [71] PETERS V. Spektroskopie und lasereigenschaften erbium-und praseodymdotierter hochschmelzender oxide[D]. Hamburg: University of Hamburg, 1998. [72] MÜLLER V. Characterisierung und optimierung von hochdotierten Yb∶YAG laserkristallen[D]. Hamburg: University of Hamburg, 2001. [73] 安 莹, 姚 程, 乔晓粉, 等. Tm3+/Yb3+∶LaF3纳米体系中掺杂Yb3+离子对Tm3+离子荧光发射的影响. 光子学报, 2010, 39(3): 508-512. AN Y, YAO C, QIAO X F, et al. Influence of Yb3+ concentration on the fluorescence emission of Tm3+ in Tm3+/Yb3+∶LaF3 nanoparticals. Acta Photonica Sinica, 2010, 39(3): 508-512 (in Chinese). [74] 步妍妍. 多波段激发Er3+离子的敏化上转换发光与机理[D]. 湘潭: 湘潭大学, 2010. BU Y Y. Sensitized upconversion luminescence of multi-band excited Er3+ ions and its mechanism[D].Xiangtan: Xiangtan University, 2010 (in Chinese). [75] BOLZ A. Energietransfer in ytterbium-dotierten sesquoxiden[D]. Hamburg: University of Hamburg, 2001. [76] KOELLING S. Untersuchungsbericht ILP 6-2000[D]. Hamburg: Technical University Hamburg, 2000. [77] HOSKINS R H, SOFFER B H. Stimulated emission from Y2O3∶Nd3+[J]. Applied Physics Letters, 1964, 4(1): 22-23. [78] IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers. Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), F 6-11 May 2007. [79] KRÄNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 250-262. [80] FAN T Y. Optimizing the efficiency and stored energy in quasi-three-level lasers[J]. IEEE Journal of Quantum Electronics, 1992, 28(12): 2692-2697. [81] PETERS V, PETERMANN K, BOLZ A, et al. Ytterbium-doped sesquioxides as host materials for high-power laser applications[C]. Proceedings of the Laser 2001 - World of Photonics 15th International Conference on Lasers and Electrooptics in Europe, Munich, F 2001/06/18, 2001. Optica Publishing Group. [82] PETERS R. Ytterbium-dotierte sesquioxide als hocheffiziente lasermaterialien[D]. Hamburg: University of Hamburg, 2009. [83] PETERS R, KRÄNKEL C, FREDRICH-THORNTON S T, et al. Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 2011, 102(3): 509-514. [84] WEICHELT B, WENTSCH K S, VOSS A, et al. A 670 W Yb∶Lu2O3 thin-disk laser[J]. Laser Physics Letters, 2012, 9(2): 110-115. [85] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 2012, 20(10): 10847. [86] DAVID S P, JAMBUNATHAN V, YUE F X, et al. Efficient diode pumped Yb∶Y2O3 cryogenic laser[J]. Applied Physics B, 2019, 125(7): 1-5. [87] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499. [88] ESSER S, RÖHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063. [89] FU Y, GUO R Q, YU H H, et al. Efficient passively Q switched lasers with a large-energy stored Yb∶LuScO3 crystal[J]. Optics Letters, 2023, 48(2): 295-298. [90] KITAJIMA S, SHIRAKAWA A, YAGI H, et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 2018, 43(21): 5451-5454. [91] GREBORIO A, GUANDALINI A, AUS DER AU J. Sub-100 fs pulses with 12.5-W from Yb∶CALGO based oscillators[C]//SPIE Proceedings, Solid State Lasers XXI: Technology and Devices. San Francisco, California, USA. SPIE, 2012. [92] MODSCHING N, DRS J, FISCHER J, et al. Sub-100-fs Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser oscillator operating at 21 W average power[J]. Optics Express, 2019, 27(11): 16111. [93] LIU X Q, JING W, HAO Q Q, et al. Characterisation of passively Q-switched Yb∶Lu2O3 ceramic laser based on graphdiyne absorber[J]. Infrared Physics & Technology, 2021, 115: 103739. [94] VAN DALFSEN K, ARAVAZHI S, GRIVAS C, et al. Thulium-doped channel waveguide laser with 1.6 W of output power and exceeding 80% slope efficiency[C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. May 12-16, 2013, Munich, Germany. IEEE, 2014: 1. [95] KOOPMANN P. Thulium- and holmium-doped sesquioxides for 2 μm lasers[D]. Hamburg: University of Hamburg, 2012. [96] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 μm[J]. Optics Letters, 2011, 36(6): 948-950. [97] ANTIPOV O, NOVIKOV A, LARIN S, et al. Highly efficient 2 μm CW and Q-switched Tm3+∶Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1 670 nm[J]. Optics Letters, 2016, 41(10): 2298-2301. [98] ANTIPOV O L, GETMANOVSKIY Y A, BALABANOV S S, et al. 1940 nm, 1966 nm and 2066 nm multi-wavelength CW and passively-Q-switched operation of L-shaped Tm3+∶Lu2O3 ceramic laser in-band fiber-laser pumped at 1670 nm[J]. Laser Physics Letters, 2021, 18(5): 055001. [99] LI X X, DING M M, WANG J, et al. High power single frequency Tm∶Y2O3 ceramic laser at 2015 nm[J]. IEEE Photonics Journal, 2021, 13(3): 1-7. [100] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and characterizations of Tm∶Lu2O3 transparent ceramics for 2 μm laser applications[J]. Optical Materials, 2022, 131: 112705. [101] SUZUKI A, TOKURAKAWA M, KRANKEL C. High quality-factor Kerr-lens mode-locked Tm∶Sc2O3 laser beyond the gain bandwidth limitation[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). June 23-27, 2019, Munich, Germany. IEEE, 2019: 1. [102] TOKURAKAWA M, FUJITA E, KRÄNKEL C. Sub-120 fs kerr-lens mode-locked Tm∶Sc2O3 laser In-band pumped by an Er;Yb fiber MOPA[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2018. [103] SUZUKI A, KRÄNKEL C, TOKURAKAWA M. Combined gain media 60 fs Kerr-lens mode-locked laser based on Tm∶Lu2O3 and Tm∶Sc2O3[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: Optica Publishing Group, 2021. [104] ZHANG N, LIU S, WANG Z, et al. Tm∶Y2O3 ceramic laser mode-locked with SESAM. Proceedings of the Optica Advanced Photonics Congress. Barcelona: Optica Publishing Group, 2022/12/1. [105] YU X X, CHU H W, ZHA F Y, et al. Watt-level diode-pumped Tm∶YVO4 laser at 2.3 μm[J]. Optics Letters, 2022, 47(21): 5501-5504. [106] ZHA F Y, YU X X, CHU H W, et al. Compact diode-pumped continuous wave and passively Q switched Tm∶YAG laser at 2.33 μm[J]. Optics Letters, 2022, 47(23): 6265-6268. [107] JAMBUNATHAN V, MATEOS X, PUJOL M C, et al. Optimization of dopant concentration in Ho∶KLu(WO4)2 laser achieving 70% slope efficiency[J]. Laser Physics, 2013, 23(12): 125801. [108] BUDNI P A, POMERANZ L A, LEMONS M L, et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Josa B, 2000, 17(5): 723-728. [109] FAN T Y, HUBER G, BYER R L, et al. Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K[J]. Optics Letters, 1987, 12(9): 678-680. [110] DONG J S, WANG W D, XUE Y Y, et al. Crystal growth and spectroscopic analysis of Ho∶Lu2O3 crystal for mid-infrared emission[J]. Journal of Luminescence, 2022, 251: 119192. [111] GHEORGHE C, LUPEI A, LUPEI V, et al. Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials[J]. Journal of Applied Physics, 2009, 105(12): 123110. [112] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 212 μm[J]. Optical Materials Express, 2011, 1(8): 1447. [113] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 21 μm[J]. Optics Express, 2013, 21(3): 3926. [114] WANG F, TANG J W, LI E H, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933-5936. [115] LOIKO P, BASYROVA L, MAKSIMOV R, et al. Comparative study of Ho∶Y2O3 and Ho∶Y3Al5O12 transparent ceramics produced from laser-ablated nanoparticles[J]. Journal of Luminescence, 2021, 240: 118460. [116] HUANG D D, YANG Q H, WANG Y G, et al. Spectral and laser properties of Yb and Ho co-doped (YLa)2O3 transparent ceramic[J]. Chinese Physics B, 2013, 22(3): 037801. [117] LI T, BEIL K, KRÄNKEL C, et al. Laser performance of highly doped Er∶Lu2O3 at 2.8 μm[C]//Lasers, Sources, and Related Photonic Devices. San Diego, California. Washington, D.C.: OSA, 2012. [118] 王 飞, 丁曼曼, 沈德元, 等. 半导体激光泵浦的3 μm掺铒固体激光研究进展[J]. 中国激光, 2022, 49(1): 121-129. WANG F, DING M M, SHEN D Y, et al. Research progress of LD-pumped 3 μm Er-doped solid-state lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 121-129 (in Chinese). [119] POLLNAN M, JACKSON S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40. [120] LI T, BEIL K, KRÄNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 285 μm[J]. Optics Letters, 2012, 37(13): 2568. [121] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 28 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497. [122] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 μm Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001. [123] ZONG M Y, HOU W T, ZHAO Y H, et al. 2.7 μm laser properties research of Er∶Y2O3 crystal[J]. Infrared Physics & Technology, 2022, 127: 104460. [124] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er∶Y2O3 ceramic laser at 2.7 μm[J]. Applied Physics Express, 2022, 15(6): 062004. [125] DING M M, WANG J, WANG F, et al. High-power Er∶Y2O3 ceramic laser with an optical vortex beam output at 2.7 μm[J]. Frontiers in Physics, 2023, 11: 1119263. [126] DING M M, LI X X, WANG F, et al. Single longitudinal mode and widely tunable Er∶Y2O3 ceramic laser at 2.7 μm[J]. IEEE Photonics Journal, 2022, 15(1): 1-4. [127] WANG L, HUANG H T, SHEN D Y, et al. High power and short pulse width operation of passively Q-switched Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Applied Sciences, 2018, 8(5): 801. [128] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002. [129] ŠVEJKAR R, ŠULC J, JELÍNKOVÁ H. Er∶Y2O3 high-repetition rate picosecond 2.7 μm laser[J]. Laser Physics Letters, 2019, 16(7): 075802. [130] SU C Y, LIU Y Z, FENG T L, et al. Optical modulation of the MXene Ti3C2Tx saturable absorber for Er∶Lu2O3 laser[J]. Optical Materials, 2021, 115: 110949. |
[1] | 刘小虎, 李坚富, 朱昭捷, 涂朝阳, 王阁阳, 杨金芳, 朱江峰, 王燕. Yb∶CaGdAlO4晶体及其超快激光技术研究进展[J]. 人工晶体学报, 2023, 52(7): 1195-1207. |
[2] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
[3] | 孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云. Yb,Ho∶GdScO3晶体生长及光谱性能分析[J]. 人工晶体学报, 2023, 52(7): 1243-1249. |
[4] | 黄建华, 吴杰, 黄艺东, 林炎富, 龚兴红, 陈雨金. Er3+,Yb3+∶Ba3Gd(PO4)3晶体的生长、光谱和1.5 μm激光性能[J]. 人工晶体学报, 2023, 52(7): 1286-1295. |
[5] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[6] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[7] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
[8] | 郭俊, 刘坚, 陈鹏, 宋青松, 张志恒, 徐晓东, 徐军. Nd∶CaYAlO4单晶光纤的生长及光谱性能研究[J]. 人工晶体学报, 2023, 52(7): 1345-1351. |
[9] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[10] | 李大鹏, 孙国富, 葛素香. 溶剂热法制备金属酞菁晶体的研究进展[J]. 人工晶体学报, 2023, 52(4): 678-687. |
[11] | 王苗苗, 张传成, 任浩, 唐绪兵, 丁守军, 邹勇, 黄护林. 不同高径比下浮区晶体生长熔体内对流不稳定性分析[J]. 人工晶体学报, 2023, 52(2): 220-228. |
[12] | 刘文娇, 张明记, 辛显辉, 郝元凯, 付秀伟, 张健, 贾志泰, 陶绪堂. 微下拉法生长Tb3AlxGa5-xO12磁光晶体及其性能表征[J]. 人工晶体学报, 2023, 52(1): 8-16. |
[13] | 力茂林, 徐悟生, 张斌, 田东升, 尹祖荣, 张镇玺, 贾永超, 徐朝鹏. 大尺寸掺铊碘化钠晶体生长及闪烁性能[J]. 人工晶体学报, 2023, 52(1): 17-24. |
[14] | 金敏. 晶体人生丨介万奇:辐射探测半导体晶体拓荒者[J]. 人工晶体学报, 2022, 51(9-10): 1523-1526. |
[15] | 杨金凤, 孙军, 秦娟, 李清连, 商继芳, 张玲, 许京军. 从矿物宝石到光电功能晶体——解读蒋民华先生《晶体赋》[J]. 人工晶体学报, 2022, 51(9-10): 1541-1559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||