[1] MOSES E I. The National Ignition Facility (NIF): a path to fusion energy[J]. Energy Conversion and Management, 2008, 49(7): 1795-1802. [2] TOLLEFSON J, GIBNEY E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 2022, 612(7941): 597-598. [3] PILE D F P. Redlining lasers for nuclear fusion[J]. Nature Photonics, 2021, 15(12): 863-865. [4] CASNER A, CAILLAUD T, DARBON S, et al. LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics[J]. High Energy Density Physics, 2015, 17: 2-11. [5] BANERJEE S, ERTEL K, MASON P D, et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb∶YAG laser[J]. Optics Express, 2015, 23(15): 19542-19551. [6] ZHU J Q, ZHU J A, LI X C, et al. Status and development of high-power laser facilities at the NLHPLP[J]. High Power Laser Science and Engineering, 2018, 6: e55. [7] 陈 跃, 姜本学, 冯 涛, 等. 重频纳秒大能量激光增益介质初探[J]. 发光学报, 2022, 43(11): 1789-1807. CHEN Y, JIANG B X, FENG T, et al. Repetition rate nanosecond large energy pulse laser gain-media[J]. Chinese Journal of Luminescence, 2022, 43(11): 1789-1807 (in Chinese). [8] BAYRAMIAN A, ARMSTRONG J, BEER G, et al. High-average-power femto-petawatt laser pumped by the Mercury laser facility[J]. Josa B, 2008, 25(7): B57-B61. [9] OGINO J, TOKITA S, KITAJIMA S, et al. 10 J operation of a conductive-cooled Yb∶YAG active-mirror amplifier and prospects for 100 Hz operation[J]. Optics Letters, 2021, 46(3): 621-624. [10] SEKINE T, KURITA T, KURATA M, et al. Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium[J]. High Energy Density Physics, 2020, 36: 100800. [11] LIU T H, FENG T, SUI Z, et al. 50 mm-aperture Nd∶LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz[J]. Optics Express, 2019, 27(11): 15595-15603. [12] 付 星, 刘廷昊, 雷新星, 等. 二极管泵浦重复频率纳秒高能固体激光器研究进展[J]. 中国激光, 2021, 48(15): 45-65. FU X, LIU T H, LEI X X, et al. High energy diode-pumped rep-rated nanosecond solid-state laser[J]. Chinese Journal of Lasers, 2021, 48(15): 45-65 (in Chinese). [13] ZHANG Q, SU L, JIANG D, et al. Highly efficient continuous-wave laser operation of laser diode-pumped Nd, Y∶CaF2 crystals[J]. Chinese Optics Letters, 2015, 13(7): 071402. [14] CHEN J, PENG Y, ZHANG Z, et al. Demonstration of a diode pumped Nd, Y co-doped SrF2 crystal based, high energy chirped pulse amplification laser system[J]. Optics Communications, 2017, 382: 201-204. [15] WEI L, HAN H, TIAN W, et al., Efficient femtosecond mode-locked Nd, Y∶SrF2 laser[J]. Applied Physics Express, 2014, 7(9): 092704. [16] QIN Z, QIAO Z, XIE G, et al. Femtosecond and dual-wavelength picosecond operations of Nd, La∶SrF2 disordered crystal laser[J]. IEEE Photonics Journal, 2017, 9(2): 1-7. [17] ZHANG F, FAN X, JIE L, et al. Dual-wavelength mode-locked operation on a novel Nd3+, Gd3+∶SrF2 crystal laser[J]. Optical Materials Express, 2016, 6(5): 1513-1519. [18] MA F, JIANG D, ZHANG Z, et al. Tailoring the local lattice distortion of Nd3+ by co doping of Y3+ through first principles calculation for tuning the spectroscopic properties[J]. Optical Materials Express, 2019, 9(11): 4256-4272. [19] ZHU J, WEI L, TIAN W, et al. Generation of sub-100 fs pulses from mode-locked Nd, Y∶SrF2 laser with enhancing SPM[J]. Laser Physics Letters 2016, 13(5): 055804. [20] 张小民, 胡东霞, 许党朋, 等. 浅论强激光系统的物理受限问题[J]. 中国激光, 2021, 48(12): 1201002. ZHANG X M, HU D X, XU D P, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002 (in Chinese). [21] 郑金祥, 李晓辉, 吴庆辉, 等. 氟化钙晶体缺陷对应力双折射影响机制的研究[J]. 人工晶体学报, 2020, 49(6): 1049-1056. ZHENG J X, LI X H, WU Q H, et al. Study on the influence mechanism of defect on stress birefringence of CaF2 crystal[J]. Journal of Synthetic Crystals, 2020, 49(6): 1049-1056 (in Chinese). [22] KATZ R N, COBLE R L. Dislocation etch pits and evidence of room-temperature microplasticity in SrF2 single crystals[J]. Journal of Applied Physics, 1970, 41(4): 1871-1873. [23] ABRAHAMS M S, HERKART R G. Effects of growth parameters on dislocations in CaF2[J]. Journal of Applied Physics, 1965, 36(1): 274-284. [24] MOTZER C, REICHLING M. High resolution study of etch figures on CaF2 (111)[J]. Journal of Applied Physics, 2009, 105(6): 064309. [25] SADRABADI P, EISENLOHR P, WEHRHAN G, et al. Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2[J]. Materials Science and Engineering: A, 2009, 510-511: 46-50. [26] STEF M, STEF F, BUSE G, et al. Influence of Pb2+ ions on the morphology of etch pits and dislocation density of CaF2∶YbF3 crystals[J]. AIP Conference Proceedings, 2012, 1472 (1): 192-197. [27] STONEHAM A M. Dislocation-induced birefringence in CaF2 for lithography optics[J]. Semiconductor Science and Technology, 2002, 17(5): L15-L16. [28] 吕海涛, 张维连, 左 燕, 等. 化学腐蚀法研究蓝宝石单晶中的位错缺陷[J]. 半导体技术, 2004, 29(4): 48-51. LV H T, ZHANG W L, ZUO Y, et al. Study on the dislocation of the sapphire crystal with chemical etching[J]. Semiconductor Technology, 2004, 29(4): 48-51 (in Chinese). [29] 权纪亮, 谢致薇, 杨元政, 等. 激光晶体位错蚀坑的SEM研究[J]. 人工晶体学报, 2009, 38(4): 1004-1007. QUAN J L, XIE Z W, YANG Y Z, et al. Observation of dislocation etch pits in laser crystal by scanning electron microscopy[J]. Journal of Synthetic Crystals, 2009, 38(4): 1004-1007 (in Chinese). [30] XU L, YU B, YU G, et al. Study on the morphology of dislocation-related etch pits on pyramidal faces of KDP crystals[J]. CrystEngComm, 2021, 23(13): 2556-2562. [31] BAGAI R K, SETH G L, BORLE W N, et al. Nature of the crystallographic defects on the (111) Te surface of CdTe delineated by preferential etching[J]. Journal of Crystal Growth, 1988, 91(4): 605-609. [32] NICOARA I, ACZEL O F G, NICOARA D, et al. Dissolution kinetics and etch pit morphology of CaF2 single crystals[J]. Crystal Research & Technology, 1986, 21(5): 647-652. [33] HUET F, DI FORTE-POISSON M A, ROMANN A, et al. Modelling of the defect structure in GaN MOCVD thin films by X-ray diffraction[J]. Materials Science and Engineering: B, 1999, 59(1-3): 198-201. [34] UNGÁR T. Dislocation densities, arrangements and character from X-ray diffraction experiments[J]. Materials Science and Engineering: A, 2001, 309: 14-22. [35] 周小清, 李洪珍, 徐 容, 等. RDX 单晶的生长诱导位错表征[J]. 含能材料, 2013, 21(3): 301-305. ZHOU X Q, LI H Z, XU R, et al. Growth-induced dislocation of RDX single crystal[J]. Chinese Journal of Energetic Materials, 2013, 21(3): 301-305 (in Chinese). [36] DUFFAR T. Use of growth-rate/temperature-gradient charts for defect engineering in crystal growth from the melt[J]. Crystals, 2020, 10(10): 909. [37] SEKI Y, WATANABE H, MATSUI J. Impurity effect on grown-in dislocation density of InP and GaAs crystals[J]. Journal of Applied Physics, 1978, 49(2): 822-828. [38] 穆宏赫, 王鹏飞, 施宇峰, 等. 热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化[J]. 无机材料学报, 2023, 38(3): 288-295. MU H H, WANG P F, SHI Y F, et al. Large-size CeF3 crystal growth by heat exchanger-Bridgman method: thermal field design and optimization[J]. Journal of Inorganic Materials, 2023, 38(3): 288-295 (in Chinese). [39] LAN C W, TING C C. A sudy on the interface control of vertical Bridgman crystal growth using a transparent multizone furnace[J]. Chemical Engineering Communications, 1996, 145(1): 131-143. [40] KRÁL R. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth[J]. Journal of Crystal Growth, 2012, 360(1): 162-166. [41] KRÁL R, NITSCH K. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement[J]. Journal of Crystal Growth, 2015, 427: 7-15. [42] BILLIG E. Some defects in crystals grown from the melt-I. Defects caused by thermal stresses[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 235(1200): 37-55. [43] BRICE J C. An analysis of factors affecting dislocation densities in pulled crystals of gallium arsenide[J]. Journal of Crystal Growth, 1970, 7(1): 9-12. |