[1] GOWER M C. Industrial applications of laser micromachining[J]. Optics Express, 2000, 7(2): 56-67. [2] SIGRIST M W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary)[J]. Review of Scientific Instruments, 2003, 74(1): 486-490. [3] PEPLOW P V, CHUNG T Y, BAXTER G D. Laser photostimulation (660 nm) of wound healing in diabetic mice is not brought about by ameliorating diabetes[J]. Lasers in Surgery and Medicine, 2012, 44(1): 26-29. [4] ISHII S, MIZUTANI K, FUKUOKA H, et al. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device[J]. Applied Optics, 2010, 49(10): 1809-1817. [5] LIPPERT E, FONNUM H, ARISHOLM G, et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator[J]. Optics Express, 2010, 18(25): 26475-26483. [6] VELIČKOV B, KAHLENBERG V, BERTRAM R, et al. Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3[J]. Zeitschrift Für Kristallographie, 2007, 222(9): 466-473. [7] WANG D H, HOU W T, LI N, et al. Growth, spectroscopic properties and crystal field analysis of Cr3+ doped GdScO3 crystal[J]. Optical Materials Express, 2019, 9(11): 4218. [8] GUPTA S K, GROVER V, SHUKLA R, et al. Exploring pure and RE co-doped (Eu3+, Tb3+ and Dy3+) gadolinium scandate: luminescence behaviour and dynamics of energy transfer[J]. Chemical Engineering Journal, 2016, 283: 114-126. [9] HU D H, DONG J S, TIAN J, et al. Crystal growth, spectral properties and Judd-Ofelt analysis of Ho∶GdScO3 crystal[J]. Journal of Luminescence, 2021, 238: 118243. [10] ARSENEV P A, BIENERT K E, SVIRIDOVA R K. Spectral properties of neodymium ions in the lattice of GdScO3 crystals[J]. Physica Status Solidi (a), 1972, 9(2): K103-K104. [11] YAMAJI A, KOCHURIKHIN V, FUJIMOTO Y, et al. Optical properties and radiation response of Ce3+-doped GdScO3 crystals[J]. Physica Status Solidi C, 2012, 9(12): 2267-2270. [12] PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299. [13] HOU W T, ZHAO H Y, QIN Z P, et al. Spectroscopic and continuous-wave laser properties of Er∶GdScO3 crystal at 2.7 μm[J]. Optical Materials Express, 2020, 10(11): 2730. [14] LI S M, FANG Q N, ZHANG Y H, et al. 2 μm ultrabroad spectra and laser operation of Tm∶GdScO3 crystal[J]. Optics & Laser Technology, 2021, 143: 107345. [15] 李加红, 孙贵花, 张庆礼, 等. 退火气氛对GdScO3和Yb∶GdScO3晶体的结构和光谱性质的影响[J]. 物理学报, 2022, 71(16): 228-234. LI J H, SUN G H, ZHANG Q L, et al. Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb∶GdScO3 crystals[J]. Acta Physica Sinica, 2022, 71(16): 228-234 (in Chinese). [16] CHAIX-PLUCHERY O, SAUER D, KREISEL J. Temperature-dependent Raman scattering of DyScO3 and GdScO3 single crystals[J]. Journal of Physics: Condensed Matter, 2010, 22(16): 165901. [17] AMANYAN S N, ARSEN′EV P A, BAGDASAROV K S, et al. Synthesis and examination of GdScO3 single crystals activated by Nd3+[J]. Journal of Applied Spectroscopy, 1983, 38(3): 343-348. [18] SUN G H, ZHANG Q L, YANG H J, et al. Crystal growth and characterization of Ho-doped Lu3Ga5O12 for 2 μm laser[J]. Materials Chemistry and Physics, 2013, 138(1): 162-166. [19] MALINOWSKI M, FRUKACZ Z, SZUFLIŃSKA M, et al. Optical transitions of Ho3+ in YAG[J]. Journal of Alloys and Compounds, 2000, 300/301: 389-394. [20] PATEL D N, REDDY B R, NASH-STEVENSON S K. Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12[J]. Optical Materials, 1998, 10(3): 225-234. [21] YAO B Q, ZHENG L L, YANG X T, et al. Judd-Oflet analysis of spectrum and laser performance of Ho∶YAP crystal end-pumped by 1.91-μm Tm∶YLF laser[J]. Chinese Physics B, 2009, 18(3): 1009-1013. [22] 张庆礼, 何 伟, 孙敦陆, 等. Judd-Ofelt光谱分析理论[J]. 光谱学与光谱分析, 2005, 25(3): 329-333. ZHANG Q L, HE W, SUN D L, et al. Judd-Ofelt spectral theory[J]. Spectroscopy and Spectral Analysis, 2005, 25(3): 329-333 (in Chinese). |