[1] 徐 军. 激光晶体材料的发展和思考[J]. 激光与光电子学进展, 2006, 43(9): 17-24. XU J. Recent developments and research frontier of laser crystals[J]. Laser & Optoelectronics Progress, 2006, 43(9): 17-24 (in Chinese). [2] 徐 军. 新型激光晶体材料及其应用[M]. 北京: 科学出版社, 2016. XU J. New laser crystal materials and their applications[M]. Beijing: Science Press, 2016 (in Chinese). [3] TANAKA H, KALUSNIAK S, BADTKE M, et al. Visible solid-state lasers based on Pr3+ and Tb3+[J]. Progress in Quantum Electronics, 2022, 84: 100411. [4] KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568. [5] LIN X J, CHEN M P, FENG Q C, et al. LD-pumped high-power CW Pr3+∶YLF laguerre-gaussian lasers at 639 nm[J]. Optics & Laser Technology, 2021, 142: 107273. [6] LIN X J, ZHU Y, JI S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+∶YLF lasers[J]. Optics & Laser Technology, 2020, 129: 106281. [7] METZ P W, HASSE K, PARISI D, et al. Continuous-wave Pr3+∶BaY2F8 and Pr3+∶LiYF4 lasers in the cyan-blue spectral region[J]. Optics Letters, 2014, 39(17): 5158-5161. [8] METZ P W, REICHERT F, MOGLIA F, et al. High-power red, orange, and green Pr3+∶LiYF4 lasers[J]. Optics Letters, 2014, 39(11): 3193-3196. [9] LIU X R, LI Z A, SHI C K, et al. LD-pumped high-power continuous-wave Pr3+∶YLF deep red lasers at 718.5 and 720.8 nm[J]. Laser Physics, 2022, 32(2): 025801. [10] ZHOU L B, ZOU J Y, ZHENG W X, et al. More than 2.3 W diode-pumped quasi-continuous-wave Pr, Mg∶SrAl12O19 bulk laser and the first demonstration of Co∶ZnSe-based passively Q-switched deep red laser at 724 nm[J]. Optics & Laser Technology, 2022, 145: 107471. [11] FUJITA S, TANAKA H, KANNARI F. Output characteristics of Pr∶YAlO3 and Pr∶YAG lasers pumped by high-power GaN laser diodes[J]. Applied Optics, 2020, 59(17): 5124. [12] RUAN S, CHAI B H T, SUTHERLAND J M, et al. Kerr-lens mode-locked visible transitions of a Pr∶YLF laser[J]. Optics Letters, 1995, 20(9): 1041. [13] SUTHERLAND J M, CHAI B H T, FRENCH P M W, et al. Visible continuous-wave laser transitions in Pr3+∶YLF and femtosecond pulse generation[J]. Optics Letters, 1996, 21(11): 797. [14] ZHANG Y X, YU H H, ZHANG H J, et al. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate[J]. Optics Letters, 2016, 41(12): 2692. [15] ZHANG Y X, YU H H, ZHANG R, et al. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range[J]. Optics Letters, 2017, 42(3): 547. [16] ZHANG Y X, MIAO R L, LU D Z, et al. Kerr-lens mode-locked Pr3+∶LuLiF4 laser[J]. Optics Letters, 2019, 44(15): 3665. [17] ZHENG W X, ZOU J Y, WANG D, et al. Exploring the potential of Pr3+∶LiY0.3Lu0.7F4 mixed crystal for diode-pumped watt-level continuous-wave lasers in the visible region[J]. Optics & Laser Technology, 2022, 151: 108023. [18] LUO S Y, GU H, GENG X, et al. A diode-pumped femtosecond Pr∶YLF laser emitting at the near-infrared 915 nm[J]. Optics & Laser Technology, 2022, 151: 107993. [19] LI N, HUANG J J, XU B, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr∶LiYF4 visible laser[J]. Photonics Research, 2019, 7(11): 1209. [20] 苏良碧. 稀土掺杂氟化物激光晶体的局域结构设计与应用[C]//第二届全国光电材料与器件学术研讨会摘要集, 2021:27. SU L B. Local Structure design and application of rare earth doped fluoride laser crystals[C]//The 2nd National Symposium on Optoelectronic Materials and Devices, 2021:27. [21] MA F K, ZHANG Z, JIANG D P, et al. Neodymium cluster evolution in fluorite laser crystal: a combined DFT and synchrotron X-ray absorption fine structure study[J]. Crystal Growth & Design, 2022, 22(7): 4480-4493. [22] 刘景和. 晶体生长与相变驱动力[J]. 长春光学精密机械学院学报, 1985, 8(3): 68-77. LIU J H. The crystal growth and driving force of transition[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1985, 8(3): 68-77 (in Chinese). [23] YU P R, BEARD M C, ELLINGSON R J, et al. Absorption cross-section and related optical properties of colloidal InAs quantum dots[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7084-7087. [24] SWINEHART D F. The beer-lambert law[J]. Journal of Chemical Education, 1962, 39(7): 333. [25] AULL B, JENSSEN H. Vibronic interactions in Nd∶YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE Journal of Quantum Electronics, 1982, 18(5): 925-930. |