[1] SCHLIESSER A, PICQUÉ N, HÄNSCH T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449. [2] WAYNANT R W, ILEV I K, GANNOT I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 635-644. [3] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. [4] BEKMAN H H P T, VAN DEN HEUVEL J C, VAN PUTTEN F J M, et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[C]//SPIE Proceedings, Technologies for Optical Countermeasures. London, United Kingdom. SPIE, 2004: 27-38. [5] WYSS C, LÜTHY W, WEBER H P, et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 1997, 139(4/5/6): 215-218. [6] FAN M Q, LI T, ZHAO J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729. [7] POLLACK S A, CHANG D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 1988, 64(6): 2885-2893. [8] ZHARIKOV E V, ZHEKOV V I, KULEVSKII L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μm[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040. [9] POLLNAN M, JACKSON S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40. [10] NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 μm) bulk lasers: a review[J]. Chinese Optics Letters, 2021, 19(9): 091407. [11] UEHARA H, KONISHI D, GOYA K, et al. Power scalable 30-W mid-infrared fluoride fiber amplifier[J]. Optics Letters, 2019, 44(19): 4777-4780. [12] ZHANG Z, WU Q H, WANG Y X, et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single-crystal fiber[J]. Laser Physics Letters, 2020, 17(8): 085801. [13] 张 振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361-1368. ZHANG Z, SU L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1361-1368 (in Chinese). [14] YANG H G, DAI Z W, SUN Z W. Upconversion luminescence and kinetics in Er3+∶YAlO3 under 652.2 nm excitation[J]. Journal of Luminescence, 2007, 124(2): 207-212. [15] DONG Q, ZHAO G J, CHEN J Y, et al. Growth and anisotropic thermal properties of biaxial Ho∶YAlO3 crystal[J]. Journal of Applied Physics, 2010, 108(2): 023108. [16] YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2 920 nm[J]. Optics Express, 2020, 28(13): 19000. [17] LI E H, UEHARA H, YAO W C, et al. High-efficiency, continuous-wave Fe∶ZnSe mid-IR laser end pumped by an Er∶YAP laser[J]. Optics Express, 2021, 29(26): 44118. [18] QUAN C, SUN D L, ZHANG H L, et al. Growth, spectroscopy and high-power laser operation of Er∶YAP crystal with different Er3+ concentrations[J]. Journal of Luminescence, 2022, 251: 119122. [19] SHAW L B, BAYYA S, KIM W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]//Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich. Washington, D.C.: OSA, 2018: SoW2H. 3. [20] LI Y A, MILLER K, JOHNSON E G, et al. Lasing characteristics of Ho∶YAG single crystal fiber[J]. Optics Express, 2016, 24(9): 9751. [21] 霍玉晶, 段玉生, 黄哲林, 等. YAP系列晶体光纤的生长和LD泵浦的Nd∶YAP单晶光纤激光器[J]. 激光与红外, 1991, 21(4): 43-45+38. HUO Y J, DUAN Y S, HUANG Z L, et al. The growth of single crystal fibers of YAP series and laser-diode pumped Nd∶YAP single crystal fiber laser[J]. Laser & Infrared, 1991, 21(4): 43-45+38 (in Chinese). [22] ROMERO J J, MONTOYA E, BAUSÁ L E, et al. Multiwavelength laser action of Nd3+∶YAlO3 single crystals grown by the laser heated pedestal growth method[J]. Optical Materials, 2004, 24(4): 643-650. [23] TONG L M. Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors[J]. Journal of Crystal Growth, 2000, 217(3): 281-286. [24] 张中晗, 戴 云, 王阳啸, 等. 单晶光纤的生长技术与应用研究[J]. 量子电子学报, 2021, 38(2): 192-213+130. ZHANG Z H, DAI Y, WANG Y X, et al. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192-213+130 (in Chinese). [25] WANG S Y, YIN Y Q, WANG T, et al. Anisotropic bubble defects and stress distribution in LuAG single-crystal fibers grown by the laser-heated pedestal growth method[J]. CrystEngComm, 2022, 24(19): 3503-3510. [26] 李 涛, 赵广军, 何晓明, 等. YAP晶体变色现象的研究[J]. 人工晶体学报, 2002, 31(5): 456-459. LI T, ZHAO G J, HE X M, et al. Study on the color change of YAP crystals[J]. Journal of Synthetic Crystals, 2002, 31(5): 456-459 (in Chinese). [27] BRICE J C. The cracking of Czochralski-grown crystals[J]. Journal of Crystal Growth, 1977, 42: 427-430. [28] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103. [29] ZHANG Z, MA F K, GUO X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals[J]. Optical Materials Express, 2018, 8(12): 3820. [30] HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502. [31] JENSEN T, DIENING A, HUBER G, et al. Investigation of diode-pumped 2.8-μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585-587. |