[1] VODOPYANOV K L. Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J]. Josa B, 1999, 16(9): 1579-1586. [2] PRATISTO H, FRENZ M, ITH M, et al. Temperature and pressure effects during erbium laser stapedotomy[J]. Lasers in Surgery and Medicine, 1996, 18(1): 100-108. [3] KOCH G J, BARNES B W, PETROS M, et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 2004, 43(26): 5092-5099. [4] WEI T, TIAN Y, CHEN F Z, et al. Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass[J]. Scientific Reports, 2014, 4: 6060. [5] ZHOU P, WANG X, MA Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751. [6] YANG S, XIA H P, JIANG Y Z, et al. Tm3+ doped α-NaYF4 single crystal for 2 μm laser application[J]. Journal of Alloys and Compounds, 2015, 643: 1-6. [7] TARG R, STEAKLEY B C, HAWLEY J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 1996, 35(36): 7117-7127. [8] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431. [9] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[J]. Josa B, 2010, 27(11): B63-B92. [10] LUO A P, LUO Z C, XU W C, et al. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation[J]. Laser Physics Letters, 2011, 8(8): 601-605. [11] ZHAO G K, LIN W, CHEN H J, et al. Dissipative soliton resonance in Bismuth-doped fiber laser[J]. Optics Express, 2017, 25(17): 20923. [12] KEYES R J, QUIST T M. Injection luminescent pumping of CaF2∶U3+ with GaAs diode lasers[J]. Applied Physics Letters, 1964, 4(3): 50-52. [13] 谭慧瑜, 张沛雄, 牛晓晨, 等. 可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J]. 发光学报, 2022, 43(11): 1741-1749. TAN H Y, ZHANG P X, NIU X C, et al. Optical properties of visible laser crystal Sm3+∶CaDyAlO4 [J]. Chinese Journal of Luminescence, 2022, 43(11): 1741-1749 (in Chinese). [14] CHEN L J, WANG Z P, ZHUANG S D, et al. Dual-wavelength Nd: YAG crystal laser at 1 074 and 1 112 nm[J]. Optics Letters, 2011, 36(13): 2554-2556. [15] SALIN F, SQUIER J, PICHÉ M. Mode locking of Ti∶Al2O3 lasers and self-focusing: a Gaussian approximation[J]. Optics Letters, 1991, 16(21): 1674-1676. [16] ZHANG H R, CHAO M J, GAO M Y, et al. High power diode single-end-pumped Nd∶YVO4 laser[J]. Optics & Laser Technology, 2003, 35(6): 445-449. [17] KUSHIDA T, MARCOS H M, GEUSIC J E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet[J]. Physical Review, 1968, 167(2): 289-291. [18] KRUPKE W F, HUBER G. Introduction[J]. Journal of the Optical Society of America B, 1986, 3(1): 79. [19] SINGH S, SMITH R G, VAN UITERT L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, 1974, 10(6): 2566-2572. [20] REEKIE L, JAUNCEY I M, POOLE S B, et al. Diode-laser-pumped operation of an Er3+-doped single-mode fibre laser[J]. Electronics Letters, 1987, 23(20): 1076. [21] CHEN Y, TAN J C, ZHANG P X, et al. Influence of Nd3+ concentration on mid-infrared emission in PbF2 crystal co-doped with Ho3+ and Nd3+ ions[J]. Journal of Rare Earths, 2023 [22] 张 振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361-1368. ZHANG Z, SU L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1361-1368 (in Chinese). [23] 崔文豪, 彭亚茹, 李 静, 等. 808 nm/980 nm近红外光激发下CaSc2O4∶Er,Nd纳米晶的上转换发光特性(英文)[J]. 发光学报, 2023, 44(2): 289-297. CUI W H, PENG Y R, L J, et al. Upconversion luminescence of CaSc2O4∶Er, Nd nanocrystals under 808 nm/980 nm near infrared excitation[J]. Chinese Journal of Luminescence, 2023, 44(2):289-297. [24] ZHAI X S, LI Y, ZHAO W, et al. One-pot synthesis of hexagonal NaLuF4∶Yb, Er microcrystals with enhanced upconversion emission and high production yield[J]. Journal of Rare Earths, 2023, 41(4): 498-506. [25] LIU Z, SHE J B, PENG B. Spectroscopic properties of Er3+-doped fluoroindate glasses[J]. Journal of Rare Earths, 2022, 40(7): 1037-1042. [26] SCHWEIZER T, JENSEN T, HEUMANN E, et al. Spectroscopic properties and diode pumped 1.6 μm laser performance in Yb-codoped Er∶Y3Al5O12 and Er∶Y2SiO5[J]. Optics Communications, 1995, 118(5/6): 557-561. [27] TOLSTIK N A, TROSHIN A E, KURILCHIK S V, et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+, Yb3+∶YVO4 crystal[J]. Applied Physics B, 2007, 86(2): 275-278. [28] BJURSHAGEN S, BRYNOLFSSON P, PASISKEVICIUS V, et al. Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2[J]. Applied Optics, 2008, 47(5): 656-665. [29] HUANG J H, CHEN Y J, LIN Y F, et al. Enhanced efficiency of Er∶Yb∶Ce∶NaGd(WO4)2 laser at 1.5-1.6 microm by the introduction of high-doping Ce3+ ions[J]. Optics Letters, 2008, 33(21): 2548-2550. [30] CHEN Y J, HUANG J H, ZOU Y Q, et al. Diode-pumped Er3+∶Yb3+∶NaCe0.43Gd0.57(WO4)2 pulse laser passively Q-switched with a Co2+∶Mg0.4Al2.4O4 saturable absorber at 1.53 μm[J]. Laser Physics, 2014, 24(4): 045810. [31] JAFFRÈS A, LOISEAU P, AKA G, et al. CW diode pumped Er, Yb, Ce∶CAS single crystal 1.5 μm laser[J]. Laser Physics, 2014, 24(12): 125801. [32] CHEN Y J, LIN Y F, HUANG J H, et al. Enhanced performances of diode-pumped sapphire/Er3+∶Yb3+∶LuAl3(BO3)4/sapphire micro-laser at 15-16 μm[J]. Optics Express, 2015, 23(9): 12401. [33] GORBACHENYA K N, KISEL V E, YASUKEVICH A S, et al. Eye-safe 1.55 μm passively Q-switched Er, Yb∶GdAl3(BO3)4 diode-pumped laser[J]. Optics Letters, 2016, 41(5): 918-921. [34] GONG G L, CHEN Y J, LIN Y F, et al. Spectral and laser properties of Er3+/Yb3+/Ce3+tri-doped Ca3NbGa3Si2O14 crystal at 1.55 μm[J]. Laser Physics Letters, 2018, 15(4): 045805. [35] CHEN Y J, LIN Y F, YANG Z M, et al. Eye-safe 155 μm Er∶Yb∶YAl3(BO3)4 microchip laser[J]. OSA Continuum, 2018, 2(1): 142. [36] CHEN Y J, HUANG J H, LIN Y F, et al. 935 nm-diode-pumped passively Q-switched Er∶Yb∶Sr3Gd2(BO3)4 pulse laser at 1.5-1.6 μm[J]. Optics & Laser Technology, 2021, 140: 107025. [37] KOECHNER W. Properties of solid-state laser materials[M]//Springer Series in Optical Sciences. New York, NY∶Springer New York, 2007: 38-101. [38] TAN W D, TANG D Y, XU X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+∶CaYAlO4 laser[J]. Optics Letters, 2011, 36(2): 259-261. [39] LI D Z, XU X D, ZHU H M, et al. Characterization of laser crystal Yb∶CaYAlO4[J]. Josa B, 2011, 28(7): 1650-1654. [40] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545. [41] HU Q Q, JIA Z T, VOLPI A, et al. Crystal growth and spectral broadening of a promising Yb∶CaLuxGd1-xAlO4 disordered crystal for ultrafast laser application[J]. CrystEngComm, 2017, 19(12): 1643-1647. [42] GREBORIO A, GUANDALINI A, AUS DER AU J. Sub-100 fs pulses with 12.5-W from Yb∶CALGO based oscillators[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8235: 25. [43] BOUDEILE J, ZAOUTER Y, HANNA M, et al. Yb∶CaGdAlO4 crystal for 47-fs diode-pumped laser[C]. Proceedings of the Conference on Lasers and Electro-Optics, 2006. [44] AGNESI A, GREBORIO A, PIRZIO F, et al. 40-fs Yb3+∶CaGdAlO4 laser pumped by a single-mode 350-mW laser diode[J]. Optics Express, 2012, 20(9): 10077. [45] SÉVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004. [46] MODSCHING N, PARADIS C, LABAYE F, et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4): 879-882. [47] GAO S F, YOU Z Y, XU J L, et al. Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals[J]. Materials Letters, 2015, 141: 59-62. [48] DI J Q, XU X D, XIA C T, et al. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals[J]. Journal of Luminescence, 2014, 155: 101-107. [49] RAO H, CONG Z H, QIN Z G, et al. A diode pumped passively mode-locked Nd∶CaGdAlO4 laser[J]. Laser Physics, 2016, 26(4): 045802. [50] HUANG J H, GONG X H, CHEN Y J, et al. Spectral properties of Er3+-doped CaGdAlO4 crystal for laser application around 1.55 μm[J]. Journal of Alloys and Compounds, 2014, 585: 163-167. [51] DI J Q, XU X D, XIA C T, et al. Crystal growth, polarized spectra, and laser performance of Yb∶CaGdAlO4 crystal[J]. Laser Physics, 2016, 26(4): 045803. [52] HE K N, LIU J X, TIAN W L, et al. Passively mode-locked femtosecond disordered crystal laser with Nd∶CGA as gain medium[J]. Chinese Physics Letters, 2016(9): 52-55. [53] LAN J L, ZHOU Z Y, GUAN X F, et al. Passively Q-switched Tm∶CaGdAlO4 laser using a Cr2+∶ZnSe saturable absorber[J]. Optical Materials Express, 2017, 7(6): 1725. [54] 谭慧瑜, 汪 瑞, 张沛雄, 等. 钆镱共掺杂铝酸钇晶体的生长及性能研究[J]. 人工晶体学报, 2021, 50(11): 2013-2018. TAN H Y, WANG R, ZHANG P X, et al. Growth and properties of Gd3+/Yb3+ co-doped yttrium aluminate crystals[J]. Journal of Synthetic Crystals, 2021, 50(11): 2013-2018 (in Chinese). [55] AULL B, JENSSEN H. Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE Journal of Quantum Electronics, 1982, 18(5): 925-930. [56] BONELLI L, CORNACCHIA F, TONELLI M, et al. Spectroscopic properties of Er∶NaLa(WO4)2 crystals and effect of Ce codoping onto the excited state energy transformation in this crystal[J]. Journal of Luminescence, 2013, 135: 178-186. [57] SOKLSKA I. Spectroscopic characterisation of LaGaO3∶Er3+ crystals[J]. Applied Physics B, 2000, 71(2): 157-162. [58] RICO M, MÉNDEZ-BLAS A, VOLKOV V, et al. Polarization and local disorder effects on the properties of Er3+-doped XBi(YO4)2, X=Li or Na and Y=W or Mo, crystalline tunable laser hosts[J]. Josa B, 2006, 23(10): 2066-2078. [59] ZHAO D, WANG G F. Growth and spectroscopic characterization of Er3+∶Sr3Y(BO3)3 crystal[J]. Journal of Luminescence, 2010, 130(3): 424-428. [60] 高 祥, 赵凤杰, 张子龙, 等. 近紫外光激发下KBaGd(MoO4)3∶Er3+的下转换发光及温度传感特性[J]. 发光学报, 2022, 43(10): 1564-1573. GAO X, ZHAO F J, ZHANG Z L, et al. Down-conversion luminescence and temperature sensing characteristics of KBaGd(MoO4)3∶Er3+ excited by near ultraviolet light[J]. Chinese Journal of Luminescence, 2022, 43(10): 1564-1573 (in Chinese). [61] HONG J Q, ZHANG L H, XU M, et al. Effect of erbium concentration on optical properties of Er∶YLF laser crystals[J]. Infrared Physics & Technology, 2017, 80: 38-43. [62] HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502. [63] SONG M J, WANG L T, ZHAO M L, et al. Optical spectroscopy, 1.5 μm emission and up-conversion properties of Er3+-doped Li3Ba2Gd3(MoO4)8 crystal[J]. Journal of Luminescence, 2011, 131(8): 1571-1576. [64] HÖMMERICH U, NYEIN E E, TRIVEDI S B. Crystal growth, upconversion, and infrared emission properties of Er3+-doped KPb2Br5[J]. Journal of Luminescence, 2005, 113(1/2): 100-108. |