[1] ARIVARASAN A, BHARATHI S, EZHIL ARASI S, et al. Investigations of rare earth doped CdTe QDs as sensitizers for quantum dots sensitized solar cells[J]. Journal of Luminescence, 2020, 219: 116881. [2] YANG P Q, CHEN C W, WANG D F, et al. Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6 Z-scheme catalyst[J]. Applied Catalysis B: Environmental, 2021, 285: 119877. [3] BAJOROWICZ B, NADOLNA J, LISOWSKI W, et al. The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts[J]. Applied Catalysis B: Environmental, 2017, 203: 452-464. [4] SARACHO-GONZÁLEZ S, PÉREZ-CENTENO A, SANTANA-ARANDA M A, et al. Effect of the combination of Cu and CdTe plasmas on the structural and optical properties of CdTe: Cu thin films deposited by laser ablation[J]. Materials Science in Semiconductor Processing, 2018, 87: 7-12. [5] ÇIRIŞ A, BAŞOL B M, ATASOY Y, et al. Effect of CdS and CdSe pre-treatment on interdiffusion with CdTe in CdS/CdTe and CdSe/CdTe heterostructures[J]. Materials Science in Semiconductor Processing, 2021, 128: 105750. [6] RAHMAN M F, HOSSAIN J, KUDDUS A, et al. A novel CdTe ink-assisted direct synthesis of CdTe thin films for the solution-processed CdTe solar cells[J]. Journal of Materials Science, 2020, 55(18): 7715-7730. [7] ZHANG J Y, CAO H C, BAI W, et al. High-sensitivity CdTe phototransistors with the response spectrum extended to 1.65 μm[J]. Journal of Materials Chemistry A, 2022, 10(39): 20837-20846. [8] MANIMOZHI T, LOGU T, ARCHANA J, et al. Enhanced photo-response of CdTe Thin film via Mo doping prepared using electron beam evaporation technique[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(23): 21059-21072. [9] KRASIKOV D, SANKIN I. Defect interactions and the role of complexes in the CdTe solar cell absorber[J]. Journal of Materials Chemistry A, 2017, 5(7): 3503-3513. [10] BURST J M, DUENOW J N, ALBIN D S, et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier[J]. Nature Energy, 2016, 1(3): 1-8. [11] GNATENKO Y, BUKIVSKIJ P M, GAMERNYK R V, et al. Photoluminescence of CdTe thin films doped with Yb[J]. Journal of Luminescence, 2021, 237: 118208. [12] PEDETTI S, ITHURRIA S, HEUCLIN H, et al. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets[J]. Journal of the American Chemical Society, 2014, 136(46): 16430-16438. [13] SAVCHUK A I, PARANCHYCH S Y, FRASUNYAK V M, et al. Optical and magnetooptical study of CdTe crystals doped with rare earth ions[J]. Materials Science and Engineering: B, 2003, 105(1/2/3): 161-164. [14] LI D B, BISTA S S, SONG Z N, et al. Maximize CdTe solar cell performance through copper activation engineering[J]. Nano Energy, 2020, 73: 104835. [15] STRONG V, URIBE-ROMO F J, BATTSON M, et al. Oriented polythiophene nanofibers grown from CdTe quantum dot surfaces[J]. Small, 2012, 8(8): 1191-1196, 1125. [16] SEDZICKI P, SKOWRONSKI L, SZCZESNY R, et al. Influence of phosphorus ion implantation on the optical properties of CdTe bulk crystal[J]. Journal of Alloys and Compounds, 2020, 844: 156002. [17] DING S J, NAN F, LIU X N, et al. Largely enhanced optical nonlinear response of heavily doped Ag∶CdTe nanocrystals around the excitonic band edge[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24958-24964. [18] ALZAID M, HADIA N M A, EL-HAGARY M, et al. Microstructural, optical, and electrical characteristics of Cu-doped CdTe nanocrystalline films for designing absorber layer in solar cell applications[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 15095-15107. [19] LI J, LI D, HONG X, et al. Unique structure and photoluminescence of Au/CdTe nanostructure materials[J]. Chemical Communications (Cambridge, England), 2004(8): 982-983. [20] ARIVARASAN A, BHARATHI S, ESSAKINAVEEN D, et al. Investigation on the Role of antimony in CdTe QDs sensitized solar cells[J]. Optical Materials, 2022, 129: 112551. [21] LIN L, YAN L B, HE C Z, et al. A theoretical study of the ability of 2D monolayer Au (111) to activate gas molecules[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11711-11720. [22] JIN J M, CHEN J F, WANG H F, et al. Insight into room-temperature catalytic oxidation of NO by CrO2(110): a DFT study[J]. Chinese Chemical Letters, 2019, 30(3): 618-623. [23] LIU D D, SHI Y L, TAO L, et al. First-principles study of methanol adsorption on heteroatom-doped phosphorene[J]. Chinese Chemical Letters, 2019, 30(1): 207-210. [24] LIN L, CHEN R X, HUANG J T, et al. Adsorption of CO, H2S and CH4 molecules on SnS2 monolayer: a first-principles study[J]. Molecular Physics, 2021, 119: 185429. [25] CHEN R X, YAN L B, LIN L, et al. Coadsorption of CO and CH4 on the Au doped SnO2 (110) surface: a first principles investigation[J]. Physica Scripta, 2022, 97(4): 045403. [26] LIN L, ZHU L H, ZHAO R Q, et al. First-principles study on ferromagnetism in 4H-SiC codoped with Al and Mn[J]. New Journal of Chemistry, 2018, 42(12): 9393-9397. [27] LANE D W. A review of the optical band gap of thin film CdSxTe1-x[J]. Solar Energy Materials and Solar Cells, 2006, 90(9): 1169-1175. [28] LIN L, CHEN R X, HE C Z, et al. Magnetic and optical properties of (Mn, Co) co-doped SnO2[J]. Vacuum, 2020, 182: 109681. [29] AUSTIN E, GEISLER A N, NGUYEN J, et al. Visible light. Part I: Properties and cutaneous effects of visible light[J]. Journal of the American Academy of Dermatology, 2021, 84(5): 1219-1231. [30] PITRE S P, YOON T P, SCAIANO J C. Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation[J]. Chemical Communications, 2017, 53(31): 4335-4338. [31] HEILER C, BASTIAN S, LEDERHOSE P, et al. Folding polymer chains with visible light[J]. Chemical Communications, 2018, 54(28): 3476-3479. [32] YAO M L, WU T, LIU B, et al. First principle study on interfacial interaction of black phosphorus and CsBr vdW heterostructure[J]. Physics Letters A, 2020, 384(25): 126614. [33] TANG X, LI S S, MA Y D, et al. Distorted Janus transition metal dichalcogenides: stable two-dimensional materials with sizable band gap and ultrahigh carrier mobility[J]. The Journal of Physical Chemistry C, 2018, 122(33): 19153-19160. [34] WANG Y J, SONG C Y, ZHANG H, et al. Study on the relationship between carrier mobility and nonlinear optical characteristics of Sb2Te3-Bi2Te3 lateral heterostructure materials and its applications in fiber lasers[J]. Journal of Materials Chemistry C, 2022, 10(33): 11862-11873. |