[1] ROSWALL N, PYKO A, ÖGREN M, et al. Long-term exposure to transportation noise and risk of incident stroke: a pooled study of nine Scandinavian cohorts[J]. Environmental Health Perspectives, 2021, 129(10): 107002. [2] CHEN C H, TU C Y, CHEN W C, et al. Clinical efficacy of cefoperazone-sulbactam versus piperacillin-tazobactam in the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia[J]. Infection and Drug Resistance, 2021, 14: 2251-2258. [3] ATAK O, HUYBRECHS D, PLUYMERS B, et al. The design of Helmholtz resonator based acoustic lenses by using the symmetric Multi-Level Wave Based Method and genetic algorithms[J]. Journal of Sound and Vibration, 2014, 333(15): 3367-3381. [4] 周 榕. 基于Helmholtz腔和薄膜耦合的声学超材料及其低频隔声性能研究[D]. 镇江: 江苏大学. ZHOU R. Study on acoustic metamaterials based on Helmholtz cavity and thin film coupling and their low-frequency sound insulation properties[D]. Zhenjiang: Jiangsu University (in Chinese). [5] MA F Y, WU J H, HUANG M. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation[J]. The European Physical Journal Applied Physics, 2015, 71(3): 30504. [6] LIU C R, WU J H, LU K, et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption[J]. Applied Acoustics, 2019, 148: 1-8. [7] 韩东海, 张广军, 赵静波, 等. 新型Helmholtz型声子晶体的低频带隙及隔声特性[J]. 物理学报, 2022, 71(11): 114301. HAN D H, ZHANG G J, ZHAO J B, et al. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal[J]. Acta Physica Sinica, 2022, 71(11): 114301 (in Chinese). [8] 陈 鑫, 姚 宏, 赵静波, 等. Helmholtz腔与弹性振子耦合结构带隙[J]. 物理学报, 2019, 68(8):084302. CHEN X, YAO H, ZHAO J B, et al. Band gap of structure coupling Helmholtz resonator with elastic oscillator[J]. Acta Physica Sinica, 2019, 68(8): 084302 (in Chinese). [9] ANG L, YONG K K, LEE H P. Plate-type acoustic metamaterials with tonraum resonator for improved sound transmission loss[C]. 25th International Congress on Sound and Vibration (ICSV25). 2018. [10] 米永振, 杨浩森, 雷 博, 等. 局域共振型声学超材料薄板带隙特性的能量解法[J]. 声学学报, 2020, 45(3): 404-414. MI Y Z, YANG H S, LEI B, et al. Energy solution of band gap characteristics of local resonance acoustic metamaterial thin plate[J]. Acta Acustica, 2020, 45(3): 404-414(in Chinese). [11] 倪 旭, 张小柳, 卢明辉, 等. 声子晶体和声学超构材料[J]. 物理, 2012, 41(10): 655-662. NI X, ZHANG X L, LU M H, et al. Phononic crystals and acoustic metamaterials[J]. Physics, 2012, 41(10): 655-662 (in Chinese). [12] PING S, ZHANG X X, LIU Z, et al. Locally Resonant Sonic Materials.(Wave-scattering yields amplitude reduction.)(Brief Article)[J]. Physica B Condensed Matter, 2003, 4050(1-4):201-205. [13] CHEN L Y, GUO Y J, YI H. Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design[J]. Physics Letters A, 2021, 388: 127054. [14] ZHANG H B, LIU B L, ZHANG X L, et al. Zone folding induced tunable topological interface states in one-dimensional phononic crystal plates[J]. Physics Letters A, 2019, 383(23): 2797-2801. [15] SONG A L, WANG X P, CHEN T N, et al. Low-frequency bandgaps of two-dimensional phononic crystal plate composed of asymmetric double-sided cylinder stubs[J]. International Journal of Modern Physics B, 2016, 30(7): 1650029. [16] LI S B, DOU Y H, CHEN T N, et al. Designing a broad locally-resonant bandgap in a phononic crystals[J]. Physics Letters A, 2019, 383(12): 1371-1377. [17] YANG Q, SONG T, WEN X D, et al. Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency[J]. Physics Letters A, 2020, 384(35): 126885. [18] 康太凤, 孙小伟, 宋 婷, 等. 二维空心散射体声子晶体板的低频带隙特性及其形成机理[J]. 声学学报, 2020, 45(4): 601-608. KANG T F, SUN X W, SONG T, et al. Low-frequency band gap characteristics of two-dimensional hollow scatterer phonon crystal plate and its formation mechanism[J]. Acta Acustica, 2020, 45(4): 601-608 (in Chinese). [19] XIAO Y, WEN J H, HUANG L Z, et al. Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators[J]. Journal of Physics D Applied Physics, 2014, 47(4): 045307. [20] 吴 健, 白晓春, 肖 勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性[J]. 物理学报, 2016, 65(6): 064602. WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction prop erties of a multi-frequency lo cally resonant phononic plate[J]. Acta Physica Sinica, 2016, 65(6): 064602 (in Chinese). [21] ZHU H F, SUN X W, SONG T, et al. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain[J]. Scientific Reports, 2021, 11(1): 8389. |