[1] DUBAL D P, AYYAD O, RUIZ V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790. [2] LI Z, HUANG J, YANN L B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. [3] 许琳琳, 于海英, 张永锋. 多孔硅制备研究进展及其在锂离子电池方面的应用[J]. 人工晶体学报, 2022, 51(11): 1983-1993. XU L L, YU H Y, ZHANG Y F. Research progress of porous silicon preparation and its application in lithium ion batteries[J]. Journal of Synthetic Crystals, 2022, 51(11): 1983-1993 (in Chinese). [4] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. [5] TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510. [6] LIU B, LUO T, MU G Y, et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes[J]. ACS Nano, 2013, 7(9): 8051-8058. [7] SAM K. Expression of concern: black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(6): 2922. [8] WANG X F, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications, 2015, 6: 6544. [9] PANG J B, BACHMATIUK A, YIN Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices[J]. Advanced Energy Materials, 2018, 8(8): 1702093. [10] ASLAM M K, XU M W. A mini-review: MXene composites for sodium/potassium-ion batteries[J]. Nanoscale, 2020, 12(30): 15993-16007. [11] NOVOSELOV K S, FAL′KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [12] JING Y, ZHOU Z, CABRERA C R, et al. Graphene, inorganic graphene analogs and their composites for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(31): 12104-12122. [13] ZHOU J, WANG L, YANG M, et al. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions[J]. Advanced Materials, 2017, 29(35): 1702061. [14] DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770. [15] 牛丽丽, 王 培, 张 丽, 等. Ti3C2Tx MXene制备及在超级电容器中的应用研究进展[J]. 人工晶体学报, 2021, 50(11): 2183-2191. NIU L L, WANG P, ZHANG L, et al. Research progress on preparation of Ti3C2Tx MXene and its application in supercapacitors[J]. Journal of Synthetic Crystals, 2021, 50(11): 2183-2191 (in Chinese). [16] 李佩漩, 郭凤梅, 张迎九. 双向有序Ti3C2Tx/rGO复合气凝胶的制备及其电化学性能的研究[J]. 人工晶体学报, 2022, 51(7): 1241-1247. LI P X, GUO F M, ZHANG Y J. Preparation and electrochemical properties of bidirectionally aligned Ti3C2Tx/rGO hybrid aerogels[J]. Journal of Synthetic Crystals, 2022, 51(7): 1241-1247 (in Chinese). [17] WANG Y W, TIAN W, ZHANG H J, et al. Nb2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation[J]. Physical Chemistry Chemical Physics, 2021, 23(21): 12288-12295. [18] BHARTI, AHMED G, KUMAR Y, et al. Determination of quantum capacitance of niobium nitrides Nb2N and Nb4N3 for supercapacitor applications[J]. Journal of Composites Science, 2021, 5(3): 85. [19] KALAL S, TAYAL A, KARMAKAR S, et al. Electron-phonon interactions and superconductivity of β-Nb2N thin films[J]. Applied Physics Letters, 2023, 122(7): 072602. [20] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [22] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. [23] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904. [24] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5. [25] WANG D S, LIU Y H, MENG X, et al. Two-dimensional VS2 monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations[J]. Journal of Materials Chemistry A, 2017, 5(40): 21370-21377. [26] HE X J, WANG R C, YIN H M, et al. 1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries[J]. Applied Surface Science, 2022, 584: 152537. [27] VAKILI-NEZHAAD G R, GUJARATHI A M, AL RAWAHI N, et al. Performance of WS2 monolayers as a new family of anode materials for metal-ion (Mg, Al and Ca) batteries[J]. Materials Chemistry and Physics, 2019, 230: 114-121. [28] WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10(10): 725-763. |