[1] 黄慧宁. 稀土掺杂氧化物半导体的上转换、光催化及协同性能研究[D]. 济南: 山东大学, 2019. HUANG H N. Study on upconversion, photocatalysis and synergistic properties of rare earth doped oxide semiconductors[D]. Jinan: Shandong University, 2019 (in Chinese). [2] 刘云庆, 于晓彩, 吴云英, 等. 紫外可见上转换剂/TiO2复合光催化剂在海洋石油污染处理中的应用[J]. 大连海洋大学学报, 2014, 29(4): 420-424. LIU Y Q, YU X C, WU Y Y, et al. Application of UV-vis conversion agent/TiO2 composite photocatalyst in marine oil pollution treatment[J]. Journal of Dalian Fisheries University, 2014, 29(4): 420-424.(in Chinese) [3] 刘丽忠. 铋基光催化剂的制备及其光催化性能研究[D]. 淮北: 淮北师范大学, 2022. LIU L Z. Preparation and photocatalytic properties of bismuth-based photocatalyst[D]. Huaibei: Huaibei Normal University, 2022 (in Chinese). [4] TONG H, OUYANG S, Bi Y, et al. ChemInform abstract: nano-photocatalytic materials: and challenges[J]. Advanced Materials, 2012, 43: 229-251. [5] 林培宾. NiS-PdS/CdS复合光催化剂合成及其光解水产氢性能[D]. 上海: 上海交通大学, 2013. LIN P B. Synthesis of NiS-PdS/CdS composite photocatalyst and its photocatalytic properties for hydrogen production from water[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese). [6] 郭亮亮. CdS形貌的调控及CdS/MoS2复合催化剂的光电催化性能研究[D]. 北京: 北京化工大学, 2014. GUO L L. Regulation of CdS morphology and study on photoelectrocatalysis performance of CdS/MoS2 composite catalyst[D]. Beijing: Beijing University of Chemical Technology, 2014 (in Chinese). [7] 冯朋朋, 潘育松, 张泽灵. 上转换/半导体核壳结构纳米复合材料光催化研究进展[J]. 工业催化, 2018, 26(8)7-11. FENG P P, PAN Y S, ZHANG Z L. Review on the photocatalytic properties of upconversion semiconductor core-shell nanocomposites[J]. Industrial Catalysis, 2018, 26(8): 7-11 (in Chinese). [8] 王泽岩, 王 朋, 刘媛媛, 等. 基于晶体学原理的高效光催化材料的设计与制备[J]. 人工晶体学报, 2021, 50(4): 685-707. WANG Z Y, WANG P, LIU Y Y, et al. Design and synthesis of efficient photocatalyst based on the principal of crystallography[J]. Journal of Synthetic Crystals, 2021, 50(4): 685-707 (in Chinese). [9] 饶 涵, 马永梅, 李思悦. NaYF4∶Yb, Tm@TiO2复合催化剂光催化降解盐酸四环素[J]. 功能材料, 2022, 53(3): 3011-3019. RAO H, MA Y M, LI S Y. Photocatalytic degradation of tetracycline hydrochloride by NaYF4∶Yb, Tm@TiO2 composite catalyst[J]. Journal of Functional Materials, 2022, 53(3): 3011-3019 (in Chinese). [10] 徐启立, 沈朝峰, 何昌春, 等. 铒掺杂g-C3N4催化剂的合成及其红光催化降解活性的研究[J]. 人工晶体学报, 2020, 49(12)2313-2321. XU Q L, SHEN C F, HE C C, et al. Synthesis of erbium doped g-C3N4 catalyst and its photocatalytic degradation activity under red light[J]. Journal of Synthetic Crystals, 2020, 49(12): 2313-2321 (in Chinese). [11] 王 君, 温福宇, 张朝红, 等. 上转换发光剂掺杂纳米TiO2的制备及可见光降解乙基紫的研究[J]. 环境科学, 2006, 27(6): 1133-1139. WANG J, WEN F Y, ZHANG Z H, et al. Preparation of nanometer TiO2 doped with upconversion luminescence agent and investigation on degradation of ethyl violet using visible light[J]. Chinese Journal of Environmental Science, 2006, 27(6): 1133-1139 (in Chinese). [12] 黄民忠, 陈建炜, 戴乐阳. 核壳结构β-NaYF4∶Yb3+,Tm3+/TiO2的制备及光催化性能[J]. 环境科学与技术, 2015,38(4):60-64. HUANG M Z, CHEN J H, DAI L Y, et al. Preparation and photocatalytic performance of core-shell structured β-NaYF4∶Yb3+,Tm3+/TiO2[J]. Environmental Science and Technology, 2015, 38(4): 60-64 (in Chinese). [13] YE Y X, LIU E Z, HU X Y, et al. Preparation and luminescence properties of Y2O3∶Er3+/TiO2 with high specific surface area[J]. Chinese Science Bulletin, 2011, 56(25): 2668-2673. [14] AN L, ZHANG J, LIU M, et al. Spectroscopic study of Lu2O3∶Yb3+, Ho3+ nanopowders[J]. Journal of Inorganic Materials, 2008, 23(2): 383-386. [15] 王 伟, 朱红波. 水热法合成NaYF4∶Yb3+-Er3+及其上转换发光性质[J]. 人工晶体学报, 2018, 47(8)1742-1746 WANG W, ZHU H B. Hydrothermal synthesis of NaYF4∶Yb3+-Er3+ and its up-conversion luminescence properties[J]. Journal of Synthetic Crystals, 2018, 47(8): 1742-1746 (in Chinese). [16] 夏冬林, 郭锦华, 周逸琛. Mn2+掺杂NaScF4∶Yb3+, Er3+上转换发光材料制备及性能研究[J]. 人工晶体学报, 2018, 47(10): 2165-2169+2176. XIA D L, GUO J H, ZHOU Y C. Preparation and luminescent property of Mn2+ doped NaScF4∶Yb3+, Er3+ up-conversion luminescent materials[J]. Journal of Synthetic Crystals, 2018, 47(10): 2165-2169+2176 (in Chinese). [17] TOU M J, MEI Y Y, BAI S, et al. Depositing CdS nanoclusters on carbon-modified NaYF4∶Yb, Tm upconversion nanocrystals for NIR-light enhanced photocatalysis[J]. Nanoscale, 2016, 8(1): 553-562. [18] TANG Y N, DI W H, ZHAI X S, et al. NIR-responsive photocatalytic activity and mechanism of NaYF4∶Yb, Tm@TiO2 core-shell nanoparticles[J]. ACS Catalysis, 2013, 3(3): 405-412. [19] YANG D, LIAO L B, ZHANG Y D, et al. Synthesis and up-conversion luminescence properties of a novel K3ScF6∶Yb3+, Tm3+ material with cryolite structure[J]. Journal of Luminescence, 2020, 224: 117285. [20] SHUAI P F, YANG D, LIAO L B, et al. Preparation, structure and up-conversion luminescence properties of novel cryolite K3YF6∶Er3+, Yb3[J]. RSC Advances, 2020, 10(3): 1658-1665. [21] 马 龙. CdS纳米复合材料的光催化性能研究[D]. 兰州: 兰州理工大学, 2020. MA L. Study on photocatalytic properties of CdS nanocomposites[D]. Lanzhou: Lanzhou University of Technology, 2020 (in Chinese). [22] 王振东, 李霞章, 钱贺明, 等. Er3+∶YAlO3/凹凸棒石复合材料的制备及光催化脱硫性能[J]. 中国稀土学报, 2019, 37(1): 26-32. WANG Z D, LI X Z, QIAN H M, et al. Preparation of Er3+ ∶YAlO3/attapulgite composite and photocatalytic desulfurization performance[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(1): 26-32 (in Chinese). [23] ZHAO P, ZHU Y H, YANG X L, et al. Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4∶Yb, Er@SiO2@Au nanocomposites[J]. Journal of Materials Chemistry A, 2014, 2(39): 16523-16530. [24] 赵飞飞. 稀土上转换发光材料以及新型半导体纳米复合光催化剂的制备及其性能研究[D]. 上海: 上海大学, 2019. ZHAO F F. Preparation and properties of rare earth upconversion luminescent materials and novel semiconductor nano-composite photocatalyst[D]. Shanghai: Shanghai University, 2019 (in Chinese). [25] 王冰冰,徐 丹. β-NaYF4∶(Yb3+/Er3+)/g-C3N4可见-近红外光催化材料的性能研究[J]. 广州化工, 2016, 44(5): 58-60. WANG B B, XU D. Performance study of β-NaYF4∶(Yb3+/Er3+)/g-C3N4 visible-near-infrared photocatalytic materials[J]. Guangzhou Chemical Industry, 2016, 44(5): 58-60 (in Chinese). [26] HU X F, MOHAMOOD T, MA W H, et al. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization[J]. The Journal of Physical Chemistry B, 2006, 110(51): 26012-26018. [27] SATOSHI H, AIKO S, HISAO H, et al. Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation[J]. Environmental Science & Technology, 2003, 37(24): 5813-22. [28] ZHU H Z, YANG Y Q, KANG Y Y, et al. Strong interface contact between NaYF4∶Yb, Er and CdS promoting photocatalytic hydrogen evolution of NaYF4∶Yb, Er/CdS composites[J]. Journal of Materials Science & Technology, 2022, 102: 1-7. [29] 张志洁, 黄海瑞, 程 昆, 等. 高效碳量子点/BiOCl纳米复合材料用于光催化污染物降解[J]. 无机材料学报, 2020, 35(4): 491-496. ZHANG Z J, HUANG H R, CHENG K, et al. High efficient carbon quantum dots/BiOCl nanocomposite for photocatalytic pollutant degradation[J]. Journal of Inorganic Materials, 2020, 35(4): 491-496 (in Chinese). [30] 于小钧, 刘素文, 冯光建, 等. 可见光下ZrO2(Er3+)/TiO2光催化剂的性能研究[J]. 硅酸盐通报, 2009, 28(2): 324-327. YU X J, LIU S W, FENG G J, et al. Study of photocatalytic activity on visible light of nano-TiO2 compounded with upconversion luminescence agent ZrO2(Er3+)[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(2): 324-327 (in Chinese). |