[1] ZAKERY A, ELLIOTT S R. Optical properties and applications of chalcogenide glasses: a review[J]. Journal of Non-Crystalline Solids, 2003, 330(1/2/3): 1-12. [2] 戴世勋, 陈惠广, 李茂忠, 等. 硫系玻璃及其在红外光学系统中的应用[J]. 红外与激光工程, 2012, 41(4): 847-852. DAI S X, CHEN H G, LI M Z, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852 (in Chinese). [3] 王 静, 吴越豪, 姜 波, 等. 硫系玻璃在无热化长波红外广角镜头中的应用[J]. 光子学报, 2016, 45(12): 90-95. WANG J, WU Y H, JIANG B, et al. Application of chalcogenide glass in designing a long wavelength infrared athermalized wide-angle lens[J]. Acta Photonica Sinica, 2016, 45(12): 90-95 (in Chinese). [4] ZHENG Y L, WANG W L, LI X C, et al. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism[J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21467-21473. [5] 姜洪妍. 短中波红外成像系统光学薄膜的研制[D]. 长春: 长春理工大学, 2018: 23-26. JIANG H Y. Development of short and medium wave infrared imaging system optical coating[D]. Changchun: Changchun University of Science and Technology, 2018: 23-26 (in Chinese). [6] ZHENG Y L, WANG W L, LI X C, et al. Polarity-controlled GaN epitaxial films achieved via controlling the annealing process of ScAlMgO4 substrates and the corresponding thermodynamic mechanisms[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16161-16167. [7] WANG W L, LI Y, ZHENG Y L, et al. Lattice structure and bandgap control of 2D GaN grown on graphene/Si heterostructures[J]. Small, 2019, 15(14): 1802995. [8] HILTON A R. Chalcogenide glasses for infrared optics[M]. New York: McGraw-Hill, 2010. [9] 付秀华, 姜洪妍, 张 静, 等. 基于硫系玻璃的短中波红外减反膜研制[J]. 中国激光, 2017, 44(9): 139-147. FU X H, JIANG H Y, ZHANG J, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass[J]. Chinese Journal of Lasers, 2017, 44(9): 139-147 (in Chinese). [10] 付秀华, 黄宏宇, 张 静, 等. 硫系玻璃基底减反保护膜及其耐环境适应性的研究[J]. 光学学报, 2020, 40(21): 219-225. FU X H, HUANG H Y, ZHANG J, et al. Anti-reflection protective film of chalcogenide glass substrate and its environmental adaptability[J]. Acta Optica Sinica, 2020, 40(21): 219-225 (in Chinese). [11] 陈为兰. 光学薄膜应力的研究[D]. 杭州: 浙江大学, 2008: 6-8. CHEN W L. Study on the stress of optical thin films[D]. Hangzhou: Zhejiang University, 2008: 6-8 (in Chinese). [12] GAO C X, ZHAO Z W, LI X H. Modeling of thermal stresses in elastic multilayer coating systems[J]. Journal of Applied Physics, 2015, 117(5): 055305. [13] YANG Y H, WANG W L, ZHENG Y L, et al. Defect effect on the performance of nonpolar GaN-based ultraviolet photodetectors[J]. Applied Physics Letters, 2021, 118(5): 053501. [14] 蒋丽媛. 温度变化对近红外光学薄膜的应力和光学特性影响研究[D]. 上海: 中国科学院上海技术物理研究所, 2018: 9-11. JIANG L Y. The influence of temperature on the stress and optical properties of near infrared optical thin films[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2018: 9-11 (in Chinese). [15] 刘 卓. As40Se60基底长波红外增透膜制备以及力学研究[D]. 昆明:昆明理工大学, 2022: 21-22. LIU Z. Preparation and mechanical study of long wavelength infrared antireflective film on As40Se60 substrate[D]. Kunming: Kunming University of Technology, 2022: 21-22. [16] STONEY G G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society of London, 1909, 82: 172-175. [17] 高春雪. 光学薄膜应力的分布与控制研究[D]. 南京: 东南大学, 2015: 5-7. GAO C X. Study of the distribution and control of stress in optical thin films[D]. Nanjing: Southeast University, 2015: 5-7 (in Chinese). |