[1] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143. [2] LUO W D, QI X L. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures[J]. Physical Review B, 2013, 87(8): 085431. [3] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator[J]. Science, 2010, 329(5992): 659-662. [4] HE K, WANG Y Y, XUE Q K. Topological materials: quantum anomalous Hall system[J]. Annual Review of Condensed Matter Physics, 2018, 9: 329-344. [5] CHANG C Z, ZHANG J S, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170. [6] CHANG C Z, ZHAO W W, KIM D Y, et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator[J]. Nature Materials, 2015, 14(5): 473-477. [7] FENG X, FENG Y, WANG J, et al. Thickness dependence of the quantum anomalous Hall effect in magnetic topological insulator films[J]. Advanced Materials, 2016, 28(30): 6386-6390. [8] ZHANG D Q, SHI M J, ZHU T S, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect[J]. Physical Review Letters, 2019, 122(20): 206401. [9] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422. [10] PENG Y, XU Y. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators[EB/OL]. 2018: arXiv: 1809.09112. https://arxiv.org/abs/1809.09112. [11] CUI J H, SHI M Z, WANG H H, et al. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2019, 99(15): 155125. [12] DENG Y J, YU Y J, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900. [13] ZHU J J, NAVEED M, CHEN B, et al. Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4[J]. Physical Review B, 2021, 103(14): 144407. [14] CHEN B, FEI F C, ZHANG D Q, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes[J]. Nature Communications, 2019, 10(1): 1-8. [15] LI J H, LI Y, DU S Q, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685. [16] 李世雯. 稀土(Nd, Sm, Gd, Dy, Yb, Sc)掺杂铁氧体的制备和性能研究[D].南宁: 广西大学, 2021. LI S W. Preparation and properties of rare earth (Nd, Sm, Gd, Dy, Yb, Sc) doped ferrite[J]. Nanning: Guangxi University, 2021 (in Chinese). [17] LIU C, WANG Y C, LI H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J]. Nature Materials, 2020, 19(5): 522-527. [18] ZEUGNER A, NIETSCHKE F, WOLTER A U B, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019, 31(8): 2795-2806. [19] OVCHINNIKOV D, HUANG X, LIN Z, et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4[J]. Nano Letters, 2021, 21(6): 2544-2550. [20] CHO Y, KANG J H, LIANG L B, et al. Phonon modes and Raman signatures of MnBi2nTe3n+1(n=1, 2, 3, 4) magnetic topological heterostructures[J]. Physical Review Research, 2022, 4: 013108. [21] SHI M Z, LEI B, ZHU C S, et al. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1,2)[J]. Physical Review B, 2019, 100(15): 155144. [22] QIAN T M, YAO Y T, HU C W, et al. Magnetic dilution effect and topological phase transitions in (Mn1-xPbx)Bi2Te4[EB/OL]. 2022: arXiv: 2206.01324. https://arxiv.org/abs/2206.01324. |