[1] LU Q P, YU Y F, MA Q L, et al. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions[J]. Advanced Materials, 2016, 28(10): 1917-1933. [2] NOVOSELOV K S, FAL′KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [3] RAN J R, ZHU B C, QIAO S Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production[J]. Angewandte Chemie, 2017, 129(35): 10509-10513. [4] LOPEZ-SANCHEZ O, ALARCON LLADO E, KOMAN V, et al. Light generation and harvesting in a van der Waals heterostructure[J]. ACS Nano, 2014, 8(3): 3042-3048. [5] ROY T, TOSUN M, CAO X, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors[J]. ACS Nano, 2015, 9(2): 2071-2079. [6] WANG Q X, ZHANG Q, LUO X, et al. Optoelectronic properties of a van der waals WS2 monolayer/2D perovskite vertical heterostructure[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45235-45242. [7] YU Z H, PAN Y M, SHEN Y T, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nature Communications, 2014, 5: 5290. [8] CHE W, CHENG W R, YAO T, et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting[J]. Journal of the American Chemical Society, 2017, 139(8): 3021-3026. [9] XU Q L, ZHANG L Y, YU J G, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications[J]. Materials Today, 2018, 21(10): 1042-1063. [10] YANG S X, WU M H, WANG B, et al. Enhanced electrical and optoelectronic characteristics of few-layer type-Ⅱ SnSe/MoS2 van der waals heterojunctions[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42149-42155. [11] FAN Y C, WANG J R, ZHAO M W. Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures[J]. Nanoscale, 2019, 11(31): 14836-14843. [12] JU L, QIN J Z, SHI L R, et al. Rolling the WSSe bilayer into double-walled nanotube for the enhanced photocatalytic water-splitting performance[J]. Nanomaterials, 2021, 11(3): 705. [13] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [14] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [15] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [16] MARSMAN M, PAIER J, STROPPA A, et al. Hybrid functionals applied to extended systems[J]. Journal of Physics: Condensed Matter, 2008, 20(6): 064201. [17] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [18] LU C, TANG C G, ZHANG J C, et al. Progressively discriminative transfer network for cross-corpus speech emotion recognition[J]. Entropy, 2022, 24(8): 1046. [19] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [20] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78(13): 134106. [21] PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubic ZrO2[J]. Physical Review Letters, 1997, 78(21): 4063-4066. [22] WEI D H, ZHOU E, ZHENG X, et al. Electric-controlled tunable thermal switch based on Janus monolayer MoSSe[J]. NPJ Computational Materials, 2022, 8: 260. [23] JU L, BIE M, TANG X A, et al. Janus WSSe monolayer: an excellent photocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces, 2020: acsami.0c06149. [24] GUO W Y, GE X, SUN S T, et al. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(9): 4946-4956. [25] JU L, TANG X A, LI J A, et al. Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting[J]. Applied Surface Science, 2022, 574: 151692. [26] YU Y D, ZHOU J A, GUO Z L, et al. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28090-28097. [27] SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Physical Review B, 2000, 62(13): 8828-8834. [28] PENG B, ZHANG H, SHAO H Z, et al. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations[J]. Journal of Materials Chemistry C, 2016, 4(16): 3592-3598. |