[1] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties[J]. Nature Reviews Materials, 2019, 4(3): 169-188. [2] CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications[J]. Nano Today, 2015, 10(3): 355-396. [3] BABAYIGIT A, ETHIRAJAN A, MULLER M, et al. Toxicity of organometal halide perovskite solar cells[J]. Nature Materials, 2016, 15(3): 247-251. [4] LI J M, CAO H L, JIAO W B, et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold[J]. Nature Communications, 2020, 11: 310. [5] LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: recent advances and perspectives[J]. Advanced Science, 2021, 8(4): 2003334. [6] UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific Reports, 2014, 4: 4467. [7] KRISHNAMOORTHY T, DING H, YAN C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(47): 23829-23832. [8] YANG Y, LIU C, CAI M L, et al. Dimension-controlled growth of antimony-based perovskite-like halides for lead-free and semitransparent photovoltaics[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 17062-17069. [9] LI Y Y, ZHOU Z C, TEWARI N, et al. Progress in copper metal halides for optoelectronic applications[J]. Materials Chemistry Frontiers, 2021, 5(13): 4796-4820. [10] JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure[J]. Advanced Materials, 2018, 30(43): 1804547. [11] WANG L T, SHI Z F, MA Z Z, et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h[J]. Nano Letters, 2020, 20(5): 3568-3576. [12] DONG Y T, WANG Y K, YUAN F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J]. Nature Nanotechnology, 2020, 15(8): 668-674. [13] ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science, 2020, 13(4): 1154-1186. [14] SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing[J]. ACS Energy Letters, 2017, 2(4): 889-896. [15] XIE L L, CHEN B K, ZHANG F, et al. Stability enhancement of Cs3Cu2I5 powder with high blue emission realized by Na+ doping strategy[J]. Journal of Luminescence, 2021, 239: 118333. [16] DU P, LUO L H, CHENG W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED[J]. Journal of the American Ceramic Society, 2020, 103(2): 1149-1155. [17] WANG Q A, NIKL M, CHENG S L, et al. Undoped and Tl-doped Cs3Cu2I5 thin films as potential X-ray scintillators[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(11): 2100422. [18] SEBASTIA-LUNA P, NAVARRO-ALAPONT J, SESSOLO M, et al. Solvent-free synthesis and thin-film deposition of cesium copper halides with bright blue photoluminescence[J]. Chemistry of Materials, 2019, 31(24): 10205-10210. [19] ZHANG Z X, LI C, LU Y, et al. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap[J]. The Journal of Physical Chemistry Letters, 2019, 10(18): 5343-5350. [20] FENG W H, TAN Y, YANG M F, et al. Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes[J]. Chem, 2022, 8(2): 351-383. [21] LIU C W, LIU Y J, WANG S X, et al. Highly efficient quasi-2D green perovskite light-emitting diodes with bifunctional amino acid[J]. Advanced Optical Materials, 2022, 10(13): 2200276. [22] LIU L H, DONG R M, GE H G, et al. Basic amino acids modulated neutral-pH PEDOT∶PSS for stable blue perovskite light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2022, 14(24): 28133-28144. [23] HULL S, BERASTEGUI P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides—II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems[J]. Journal of Solid State Chemistry, 2004, 177(9): 3156-3173. [24] YUN S C, MA S, KWON H C, et al. Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability[J]. Nano Energy, 2019, 59: 481-491. [25] WU Z Y, LIU X L, ZHONG H, et al. Natural amino acid enables scalable fabrication of high-performance flexible perovskite solar cells and modules with areas over 300 cm2[J]. Small Methods, 2022, 6(12): 2200669. [26] PAULA LEI Q, JONATHAN AMSTER I. The reactions of ground state Cu+ and Fe+ with the 20 common amino acids[J]. Journal of the American Society for Mass Spectrometry, 1996, 7(8): 722-730. [27] HOYAU S, OHANESSIAN G. Complexation of small organic molecules by Cu+[J]. Chemical Physics Letters, 1997, 280(3/4): 266-272. [28] PÉAN E V, DE CASTRO C S, DIMITROV S, et al. Investigating the superoxide formation and stability in mesoporous carbon perovskite solar cells with an aminovaleric acid additive[J]. Advanced Functional Materials, 2020, 30(12): 1909839. [29] WU W Q, YANG Z B, RUDD P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells[J]. Science Advances, 2019, 5(3): eaav8925. [30] FENG W H, ZHANG C X, ZHONG J X, et al. Correlating alkyl chain length with defect passivation efficacy in perovskite solar cells[J]. Chemical Communications, 2020, 56(37): 5006-5009. [31] LI Y Y, LIN C K, ZHENG G L, et al. Novel 〈110〉-oriented organic-inorganic perovskite compound stabilized by N-(3-aminopropyl)imidazole with improved optical properties[J]. Chemistry of Materials, 2006, 18(15): 3463-3469. [32] LI Y W, MENG L, YANG Y, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nature Communications, 2016, 7: 10214. [33] LI Y, LI S Q, SHEN Y J, et al. Multifunctional histidine cross-linked interface toward efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 47872-47881. [34] LIAN L Y, ZHENG M Y, ZHANG P, et al. Photophysics in Cs3Cu2X5 (X=Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization[J]. Chemistry of Materials, 2020, 32(8): 3462-3468. [35] 孙家林, 国清华, 吴 源, 等. Cs3Cu2I5晶体薄膜吸收谱的研究. 光谱学与光谱分析, 1999, 19(5): 648-650. SUN J L, GUO Q H, WU Y, et al. The absorption spectra of crystal thin film Cs3Cu2I5. Spectroscopy and Spectral Analysis, 1999, 19(5): 648-650. [36] YANG P, LIU G N, LIU B D, et al. All-inorganic Cs2CuX4 (X=Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence[J]. Chemical Communications, 2018, 54(82): 11638-11641. [37] LI T, MO X M, PENG C Y, et al. Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses[J]. Chemical Communications, 2019, 55(31): 4554-4557. [38] WAFEE S, LIU B H, LEU C C. Lewis bases: promising additives for enhanced performance of perovskite solar cells[J]. Materials Today Energy, 2021, 22: 100847. [39] ZHANG L Q, CAO K, QIAN J E, et al. Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells[J]. Journal of Materials Chemistry C, 2020, 8(48): 17482-17490. |