欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (9): 1698-1706.

• 研究论文 • 上一篇    下一篇

Ru掺杂Ni3N催化剂的电催化析氢反应

张艳平, 高鹏, 李建保, 王敏, 万伟敏, 陈拥军   

  1. 海南大学材料科学与工程学院, 南海海洋资源利用国家重点实验室, 海口 570228
  • 收稿日期:2023-03-09 出版日期:2023-09-15 发布日期:2023-09-19
  • 通信作者: 陈拥军,博士,教授。E-mail:chenyj99@163.com
  • 作者简介:张艳平(1996—),女,河南省人,硕士研究生。E-mail:497957657@qq.com
  • 基金资助:
    海南省自然科学基金(522QN282)

Ruthenium Dopant in Ni3N Catalyst for Electrocatalytic Hydrogen Evolution Reaction

ZHANG Yanping, GAO Peng, LI Jianbao, WANG Min, WAN Weimin, CHEN Yongjun   

  1. State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
  • Received:2023-03-09 Online:2023-09-15 Published:2023-09-19

摘要: 开发高催化活性和廉价催化剂是催化分解水制氢技术的关键。过渡金属氮化镍(Ni3N)具有优异的热/化学稳定性、电化学活性和类贵金属特性,吸引了越来越多研究者的兴趣。然而,Ni3N碱性电催化析氢反应过程中,水的解离效率低,且对反应中间体质子的吸附太强,这两个因素导致Ni3N的性能远低于Pt,还有很大的改进空间。本文通过水热-氮化两步法成功制备了Ru掺杂多孔纳米片Ni3N/Ru。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Ni3N/Ru材料的组成、形貌和结构进行表征,通过X射线光电子衍射仪(XPS)对催化机理进行分析,并研究Ru掺杂量对Ni3N材料形貌和电催化性能的影响。结果表明,6.30%Ru负载的Ni3N在1 mol/L KOH电解液中驱动10 mA·m-2的电流密度仅需要49 mV过电位,可以和商业Pt/C相媲美(46 mV@10 mA·cm-2)。将其应用于两电极全解水体系,仅需1.54 V的电压即可获得10 mA·cm-2的电流密度。突出的催化性能归因于Ru掺杂Ni3N有效提升水解离,并使Ni3N中Ni和N的电子云密度降低,促进吸附氢中间体的形成过程(H++e-= H*),改善析氢反应动力学,进而提升其电催化性能。

关键词: Ni3N, Ru掺杂, 电催化析氢, 电催化析氧, 电催化性能, 全解水

Abstract: The development of high catalytic activity and cheap catalyst is the key of catalytic decomposition of water to produce hydrogen. The transition metal nickel nitride (Ni3N) has excellent thermal/chemical stability, electrochemical activity and noble metal-like properties, which attracts more and more researchers’ interest. However, in the process of Ni3N alkaline electrocatalysis of hydrogen evolution reaction, the dissociation efficiency of water is low, and the adsorption of the intermediate proton is too strong, which result in the much lower performance of Ni3N than Pt catalyst. In this work, Ru-doped porous Ni3N nanosheets (Ni3N/Ru) were prepared successfully by two-step method of hydrothermal and nitriding process. The composition, morphology and structure of Ni3N/Ru materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic mechanism was analyzed by X-ray photoelectron diffractometer (XPS), and the effect of Ru doping amount on the morphology and electrocatalytic performance of Ni3N materials was also studied. The results show that Ni3N loaded with 6.30%Ru needs only an overpotential of 49 mV to drive the current density of 10 mA·m-2 in 1 mol/L KOH electrolyte, which is comparable to commercial Pt/C (46 mV@10 mA·cm-2). The Ni3N/Ru were then assembled into a two-electrode system for overall water splitting, and the cell voltage required to reach the current density of 10 mA·cm-2 is only 1.54 V. The outstanding catalytic performance is attributed to the fact that Ru doping Ni3N effectively improves the dissociation of water, reduces the electron cloud density of Ni and N in Ni3N, promotes the formation process of adsorbed hydrogen intermediates (H++e-=H*), improves hydrogen evolution reaction kinetics, and thus enhances its electrocatalytic performance.

Key words: Ni3N, Ru doping, electrocatalytic hydrogen evolution, electrocatalytic oxygen evolution, electrocatalytic performance, overall water splitting

中图分类号: