欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (10): 1745-1757.

• 研究论文 • 上一篇    下一篇

堆积硅料的阶跃分布孔隙率对准单晶铸锭过程籽晶熔化的影响

孙英龙1, 郑丽丽1, 张辉2   

  1. 1.清华大学航天航空学院,北京 100084;
    2.清华大学工程物理系,北京 100084
  • 收稿日期:2023-04-17 发布日期:2023-10-18
  • 通信作者: 郑丽丽,博士,教授。E-mail:zhenglili@tsinghua.edu.cn。
  • 作者简介:孙英龙(1988—),男,吉林省人,博士研究生。E-mail:sunyl19@mails.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1506501)

Effect of Step Porosity Distribution of Stacked Silicon on Seed Crystal Melting During Quasi-Single Crystalline Silicon Casting Process

SUN Yinglong1, ZHENG Lili1, ZHANG Hui2   

  1. 1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
    2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • Received:2023-04-17 Published:2023-10-18

摘要: 本文针对光伏太阳能用准单晶硅铸锭系统的硅料熔化过程进行了数值模拟研究,尤其是孔隙率阶跃分布的堆积硅料熔化过程对籽晶熔化的影响。研究结果表明:堆积硅料孔隙率呈轴向阶跃分布有利于降低籽晶的熔化比例;籽晶的熔化界面形状主要受下层孔隙率影响,在特定的平均孔隙率范围内,上下两层孔隙率差异较小时,孔隙率的轴向阶跃分布对籽晶的熔化界面形状影响较小;当籽晶的熔化比例相近时,平均孔隙率越小,籽晶的熔化界面形状越平缓,越有利于籽晶边缘区域的保留;当平均孔隙率一定时,下层孔隙率越小越有利于籽晶边缘区域的保留。堆积硅料区域孔隙率呈径向阶跃分布会使籽晶的熔化界面形状发生畸变,内层孔隙率的逐渐增大会使籽晶的熔化界面形状由“凸”逐渐转变为“凹”,外层孔隙率不大于内层孔隙率时籽晶可以得到有效保留;内外两层孔隙率差值越小,籽晶的熔化比例越小。籽晶的熔化比例分布在不同轴向阶跃分布孔隙率下呈现一定的中心对称性,而在不同径向阶跃分布孔隙率下呈现一定的周期性,孔隙率均匀分布时的籽晶熔化界面形状优于其他情况。在实际工况条件下,可以根据由不同孔隙率分布条件下获取的籽晶熔化状态数据绘制的等值线图对堆积硅料区域的孔隙率分布进行合理配置。

关键词: 准单晶硅铸锭, 阶跃分布孔隙率, 籽晶熔化, 堆积硅料, 界面形状, 熔化状态

Abstract: This paper presents numerical studies of the melting process of stacked silicon with step porosity distribution, specifically its effect on seed crystal melting during quasi-single crystalline silicon casting for photovoltaic applications. The results show that an axial step porosity distribution in stacked silicon leads to a reduced melting ratio of the seed crystal. And the interface shape after seed crystal melting is mainly determined by the porosity at the lower part of the stacked silicon. In a specific range of the porosity, the axial step porosity distribution has little effect on the interface shape when the porosity difference between the upper and lower parts is small. For the situation with a similar melting ratio in the seed crystal, the interface shape of the seed crystal is flatter for a smaller average porosity. For the situation with a constant average porosity, a smaller porosity in the lower part of the stacked silicon is beneficial to the retention of the edge area of the seed crystal. The radial step porosity distribution dramatically influences the interface shape after seed crystal melting. As the porosity in the inner part of the stacked silicon increases, the interface shape changes from convex to concave after the seed crystal melting. To effectively retain the seed crystal, it is preferred to have the porosity in the outer part of the stacked silicon smaller than that of the inner part. And the size of the melting ratio of the seed crystal is directly related to the difference between the porosity at the outer and inner parts. The smaller the difference between the porosity at the outer and inner parts is, the smaller the melting ratio of seed crystals is. The melting ratio of seed crystal with axial step porosity distribution exhibits a certain symmetry, while that with radial step porosity distribution shows a certain periodicity. The interface shape after seed crystal melting is better under the uniform porosity distribution than others. Under the actual working conditions, the porosity distribution in the stacked silicon can be reasonably configured according to the contour map drawn by the melting state data of seed crystals obtained under different porosity distribution conditions. These findings provide guidelines for the optimal design of silicon stacking for the casting process.

Key words: quasi-single crystalline silicon casting, step porosity distribution, seed crystal melting, stacked silicon, interface shape, melting state

中图分类号: