[1] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114. [2] LAN Y C, MINNICH A J, CHEN G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach[J]. Advanced Functional Materials, 2010, 20(3): 357-376. [3] WANG H, PEI Y Z, LALONDE A D, et al. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe[J]. Advanced Materials, 2011, 23(11): 1366-1370. [4] ZHU T, LIU Y, FU C, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 2017,29(14): 1605884. [5] ZHOU W W, ZHU J X, Li D, et al. Binary-phased nanoparticles for enhanced thermoelectric properties[J]. Advanced Materials, 2009, 21(31): 3196. [6] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014,508: 373. [7] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451. [8] DAHAL T, JIE Q, LAN Y C, et al. Thermoelectric performance of Ni compensated cerium and neodymium double filled p-type skutterudites[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18170-18175. [9] MALLICK M M, VITTA S. Giant enhancement in high-temperature thermoelectric figure-of-merit of layered cobalt oxide, LiCoO2, due to a dual strategy-co-substitution and lithiation[J]. Inorganic Chemistry, 2017, 56(10): 5827-5838. [10] SUI F, HE H A, BOBEV S, et al. Synthesis, structure, thermoelectric properties, and band gaps of alkali metal containing type I clathrates: A8Ga8Si38 (A=K, Rb, Cs) and K8Al8Si38[J]. Chemistry of Materials, 2015, 27(8): 2812-2820. [11] XU B, ZHANG J, LI X F, et al. Electronic structure and assessment of thermoelectric performance of TiCoSb[J]. Materials Research Innovations, 2014, 18(2): 104-107. [12] XU B, LONG C G, WANG Y S, et al. First-principles investigation of electronic structure and transport properties of the filled skutterudite LaFe4Sb12 under different pressures[J]. Chemical Physics Letters, 2012, 529: 45-48. [13] HEREMANS J P, WIENDLOCHA B. Chapter 2 tetradymites[M]//UHER C, Ed. Materials Aspect of Thermoelectricity. Boca Raton: CRC Press, 2016: 39-94. [14] HU L P, MENG F C, ZHOU Y J, et al. Leveraging deep levels in narrow bandgap Bi0.5Sb1.5Te3 for record-high ZTave near room temperature[J]. Advanced Functional Materials, 2020, 30(45): 2005202. [15] ZHU B, LIU X X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy & Environmental Science, 2020, 13(7): 2106-2114. [16] LIU Y F, XU Y F, JI Y J, et al. Monolayer Bi2Se3-xTex: novel two-dimensional semiconductors with excellent stability and high electron mobility[J]. Physical Chemistry Chemical Physics, 2020, 22(17): 9685-9692. [17] XU B, SONG L G, PENG G H, et al. Thermoelectric performance of monolayer Bi2Te2Se of ultra low lattice thermal conductivity[J]. Physics Letters A, 2019, 383(28): 125864. [18] RASHID Z, NISSIMAGOUDAR A S, LI W. Phonon transport and thermoelectric properties of semiconducting Bi2Te2X (X=S, Se, Te) monolayers[J]. Physical Chemistry Chemical Physics, 2019, 21(10): 5679-5688. [19] ZHONG Q, DAI Z H, LIU J Y, et al. Phonon thermal transport in Janus single layer M2XY (M=Ga; X, Y=S, Se, Te): a study based on first-principles[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113683. [20] PANDEY T, PARKER D S, LINDSAY L. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys[J]. Nanotechnology, 2017, 28(45): 455706. [21] PATEL A, SINGH D, SONVANE Y, et al. High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te)[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46212-46219. [22] WANG N, SHEN C, SUN Z H, et al. High-temperature thermoelectric monolayer Bi2TeSe2 with high power factor and ultralow thermal conductivity[J]. ACS Applied Energy Materials, 2022, 5(2): 2564-2572. [23] WAN W, ZHAO S, GE Y, et al. Phonon and electron transport in Janus monolayers based on InSe[J]. Journal of Physics: Condensed Matter, 2019, 31: 435501. [24] ZHU X L, YANG H Y, ZHOU W X, et al. KAgX (X=S, Se): high-performance layered thermoelectric materials for medium-temperature applications[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36102-36109. [25] GU J J, QU X L. Excellent thermoelectric properties of monolayer RbAgM (M=Se and Te): first-principles calculations[J]. Physical Chemistry Chemical Physics, 2020, 22(45): 26364-26371. [26] SKOUG E J, MORELLI D T. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds[J]. Physical Review Letters, 2011, 107(23): 235901. [27] DU M H, SINGH D J. Enhanced Born charge and proximity to ferroelectricity in thallium halides[J]. Physical Review B, 2010, 81:144114. [28] MUKHOPADHYAY S, PARKER D S, SALES B C, et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4[J]. Science, 2018, 360: 1455. [29] HE X, SINGH D J, BOON-ON P, et al. Dielectric behavior as a screen in rational searches for electronic materials: metal pnictide sulfosalts[J]. Journal of the American Chemical Society, 2018, 140(51): 18058-18065. [30] KUROSAKI K, LI G H, OHISHI Y, et al. Enhancement of thermoelectric efficiency of CoSb3-based skutterudites by double filling with K and Tl[J]. Frontiers in Chemistry, 2014, 2: 84. [31] HAAS P, TRAN F, BLAHA P, et al. Insight into the performance of GGA functionals for solid-state calculations[J]. Physical Review B, 2009, 80: 195109. [32] KRESSE G, HAFNER J. Ab initio Hellmann-Feynman molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1993, 156/157/158: 956-960. [33] XU X T, LIU Y, FANG W, et al. Improved thermoelectric properties of doped A0.5B0.5NiSn (A, B=Ti, Zr, Hf) with a special quasirandom structure[J]. Journal of Materials Science, 2021, 56(6): 4280-4290. [34] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80. [35] BALLONE P, ANDREONI W, CAR R, et al. Equilibrium structures and finite temperature properties of silicon microclusters from ab initio molecular-dynamics calculations[J]. Physical Review Letters, 1988, 60: 271. [36] LI W, CARRETE J, KATCHO N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758. [37] CHOI M, OBA F, TANAKA I. First-principles study of native defects and lanthanum impurities in NaTaO3[J]. Physical Review B, 2008, 78: 014115. [38] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78: 134106. |