[1] YANAGIDA T. Inorganic scintillating materials and scintillation detectors[J]. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 2018, 94(2): 75-97. [2] ZHENG Z G, TONG Y, WEI R F, et al. Tb3+-doped transparent BaGdF5 glass-ceramics scintillator for X-ray detector[J]. Journal of the American Ceramic Society, 2020, 103(4): 2548-2554. [3] 王欣欣, 黄立辉, 赵士龙, 等. Tb3+掺杂高密度锗酸盐闪烁玻璃的发光性质[J]. 发光学报, 2018, 39(2): 115-120. WANG X X, HUANG L H, ZHAO S L, et al. Luminescence properties of Tb3+ doped high density germanate scintillating glasses[J]. Chinese Journal of Luminescence, 2018, 39(2): 115-120 (in Chinese). [4] ROBB J L, COOK J, CARSON W. Composition effects on optical properties of Tb3+-doped heavy germanate glasses[J]. Veterinary Surgery, 2005, 34: 293-296. [5] JI Z M, NI H H, YUAN L Y, et al. Investigation of optical transmittance and light response uniformity of 600-mm-long BGO crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 753: 143-148. [6] NOVOTNY R W, BRINKMANN K T, DORMENEV V, et al. Performance of DSB-a new glass and glass ceramic as scintillation material for future calorimetry[J]. Journal of Physics: Conference Series, 2019, 1162: 012023. [7] SUN X Y, JIANG D G, CHEN S W, et al. Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content[J]. Journal of the American Ceramic Society, 2013, 96(5): 1483-1489. [8] CHEWPRADITKUL W, PATTANABOONMEE N, YAWAI N, et al. Luminescence and scintillation properties of Ce3+-doped SiO2-Al2O3-BaF2-Gd2O3 glasses[J]. Optical Materials, 2019, 98: 109468. [9] SUN X Y, YU X G, WANG W F, et al. Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses[J]. Journal of Non-Crystalline Solids, 2013, 379: 127-130. [10] SUN X Y, YE Z P, WU Y T, et al. Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass[J]. Optical Materials Express, 2015, 5(6): 1381. [11] SUN X Y, XIAO Z H, ZHONG J P. Alkaline-earth oxide network modifier on optical properties of Ce3+-activated borogermanate glasses[J]. Optical Materials, 2015, 50: 110-113. [12] SUN X Y, LIU X J, XIAO Z H, et al. Enhancement of emission intensity in Ce3+-activated aluminoborosilicate scintillating glass synthesized in air[J]. Journal of the American Ceramic Society, 2020, 103(2): 768-772. [13] REN G H, QIN L S, LU S, et al. Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5∶Ce) crystals doped with cerium ions[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531(3): 560-565. [14] SUN X Y, YE Z P, WU Y T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. Journal of the American Ceramic Society, 2014, 97(11): 3388-3391. [15] MASAI H, OKADA G, TORIMOTO A, et al. X-ray-induced scintillation governed by energy transfer process in glasses[J]. Scientific Reports, 2018, 8: 623. [16] 周 亮, 周永慧, 郑佑轩, 等. β-Zn3(PO4)2∶Mn2+, B3+长余辉发光材料的性能[J]. 发光学报, 2008, 29(6): 1008-1012. ZHOU L, ZHOU Y H, ZHENG Y X, et al. Long lasting phosphorescent properties of β-Zn3(PO4)2∶Mn2+, B3+ materials[J]. Chinese Journal of Luminescence, 2008, 29(6): 1008-1012 (in Chinese). [17] LEMPICKI A, WOJTOWICZ A J, BERMAN E. Fundamental limits of scintillator performance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2/3): 304-311. |