欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (1): 123-131.

• 研究论文 • 上一篇    下一篇

A3PO4(A=Li,Na,K,Rb,Cs)电子结构与光学性质的第一性原理研究

王云杰1,2, 文杜林1,2, 苏欣1,2   

  1. 1.伊犁师范大学物理科学与技术学院,伊宁 835000;
    2.伊犁师范大学新疆凝聚态相变与微结构实验室,伊宁 835000
  • 收稿日期:2023-07-19 出版日期:2024-01-15 发布日期:2024-01-15
  • 通信作者: 苏 欣,博士,副教授。E-mail:suxin_phy@sina.com
  • 作者简介:王云杰(1999—),男,新疆维吾尔自治区人,硕士研究生。E-mail:1575469121@qq.com
  • 基金资助:
    新疆维吾尔自治区重点实验室开放课题(2023D04074);伊犁师范大学科研项目(22XKZZ21);伊犁师范大学大学生创新训练项目(S202110764006,YS2022G018);新疆伊犁科技计划(YZ2022Y002);新疆维吾尔自治区天山英才计划第三期(2021-2023)

First-Principles Study on the Electronic Structure and Optical Properties of A3PO4(A=Li, Na, K, Rb, Cs)

WANG Yunjie1,2, WEN Dulin1,2, SU Xin1,2   

  1. 1. School of Physical Science and Technology, Yili Normal University, Yining 835000, China;
    2. Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China
  • Received:2023-07-19 Online:2024-01-15 Published:2024-01-15

摘要: 基于密度泛函理论对P-O配位多面体与不同阳离子构成的系列化合物A3PO4(A=Li, Na, K, Rb, Cs)的几何结构、电子结构、光学性质进行系统探究。研究表明通过碱金属原子替换可以改变结构框架,从而调节系列化合物的带隙及光学性能,为设计综合性能优异的材料提供了一条有效途径。能带结构计算表明,五种化合物均为直接带隙化合物且都具有宽的带隙,A3PO4(A=Li, Na, K, Rb, Cs)的带隙依序为5.853、5.153、4.083、3.559、3.405 eV。布居分析发现阳离子A(A=Li, Na, K, Rb)与氧键合形成O—A键,其键长依序逐渐增大并呈现离子键,这也是A3PO4(A=Li, Na, K, Rb)带隙依序减小的主要原因。另一方面,Cs3PO4没有形成离子性质的O—Cs键,导致带隙减小。五种化合物的导带都是由碱金属原子的s和p轨道,以及P-3p轨道组成,价带顶的主要贡献者是O-2p轨道,O原子的2p轨道还在费米能级附近表现出较强的局域性,P-3p轨道与O的2p轨道成键,P—O表现为强的共价键。五种化合物对低能区电磁波响应较弱,主要响应集中在5~15 eV的高能区。

关键词: 磷酸盐晶体, 第一性原理, 密度泛函理论, 电子结构, 光学性能

Abstract: A systematic exploration was conducted on the geometrical structures, electronic structures and optical properties of a series of compounds A3PO4 (A=Li, Na, K, Rb, Cs), made up of P-O coordinated polyhedra with different cations, based on density functional theory. The results show that by changing the substitution of alkali metal atoms, the structural framework can be manipulated, thereby modulating its band gap and optical properties, providing an effective approach for designing materials with excellent comprehensive performance. In investigating the relationship between the geometric structures and band gap properties of these compounds, the calculations of band structure indicates that all five compounds show direct bandgap structure and have wide band gaps of 5.853, 5.153, 4.083, 3.559 and 3.405 eV for A=Li, Na, K, Rb, Cs, respectively. Analysis of the atomic populations indicate that A(A=Li, Na, K, Rb) cation bind with oxygen to form O—A bond exhibiting ionic characteristics. This bonding behavior likely contributes to the gradual decrease in the band gap of A3PO4 compounds as the cation atomic number increases. On the other hand, Cs3PO4 doesn't form an O—Cs bond with an ionic character, thus leading to a reduction in the band gap. The conduction band of these five compounds is composed of the s and p orbitals of alkali metal atoms as well as the P-3p orbital. The main contributor to the top of the valence band is the O-2p orbital, and the O-2p orbital of O atom also shows strong localization near the Fermi level. The P-3p orbitals bond with the 2p orbitals of O, showing a strong covalent bond of P—O. All five compounds have weak responses to low-energy electromagnetic waves, mainly concentrated in the high-energy region of 5~15 eV.

Key words: phosphate crystal, first-principle, density functional theory, electronic structure, optical property

中图分类号: