[1] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review[J]. Progress in Materials Science, 2015, 68: 1-66. [2] LIU Y, NI L H, REN Z H, et al. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3[J]. Chinese Physics B, 2012, 21(1): 016201. [3] SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550. [4] 黄 建, 张学伍, 赵 程, 等. 钛酸铅系功能陶瓷改性的研究现状及改性陶瓷的应用现状[J]. 机械工程材料, 2021, 45(6): 94-98. HUANG J, ZHANG X W, ZHAO C, et al. Research status of modification of lead titanate series functional ceramics and application of modified ceramics[J]. Materials for Mechanical Engineering, 2021, 45(6): 94-98 (in Chinese). [5] 邓鹏星, 文志勤, 马 博, 等. 体积应变对立方钛酸铅电子结构和光学性质的影响[J]. 人工晶体学报, 2022, 51(1): 85-91. DENG P X, WEN Z Q, MA B, et al. Effect of volume strain on electronic structure and optical properties of cubic lead titanate[J]. Journal of Synthetic Crystals, 2022, 51(1): 85-91 (in Chinese). [6] SCOTT J F, PAZ DE ARAUJO C A. Ferroelectric memories[J]. Science, 1989, 246(4936): 1400-1405. [7] HOSSEINI S M, MOVLAROOY T, KOMPANY A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316-321. [8] ZHU Z Y, WANG B, WANG H, et al. First-principle study of ferroelectricity in PbTiO3/SrTiO3 superlattices[J]. Solid-State Electronics, 2006, 50(11/12): 1756-1760. [9] GE F F, WU W D, WANG X M, et al. The first-principle calculation of structures and defect energies in tetragonal PbTiO3[J]. Physica B: Condensed Matter, 2009, 404(20): 3814-3818. [10] CHEN X, TAN P F, ZHOU B H, et al. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 647: 456-462. [11] GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties: a review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126. [12] OHNO T, TSUBOTA T, NAKAMURA Y, et al. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light[J]. Applied Catalysis A: General, 2005, 288(1/2): 74-79. [13] MORET M P, DEVILLERS M A C, WÖRHOFF K, et al. Optical properties of PbTiO3, PbZrxTi1-xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3[J]. Journal of Applied Physics, 2002, 92(1): 468-474. [14] HUSSIN N H, TAIB M F M, HASSAN O H, et al. Study of geometrical and electronic structure of lanthanum doped PbTiO3 and PbZrTiO3: first principles calculation[C]//AIP Conference Proceedings. Ho Chi Minh, Vietnam. Author(s), 2018. [15] NIU P J, YAN J L, MENG D L. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J]. Journal of Semiconductors, 2015, 36(4): 043004. [16] 李宏光, 闫金良. N掺杂位置对四方相PbTiO3电子结构和光学性能的影响[J]. 材料科学与工程学报, 2017, 35(1): 14-18. LI H G, YAN J L. Electronic structures and optical properties of N-doped tetragonal PbTiO3 with different doping sites[J]. Journal of Materials Science and Engineering, 2017, 35(1): 14-18 (in Chinese). [17] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [18] OKUNAKA S, TOKUDOME H, ABE R. Facile water-based preparation of Rh-doped SrTiO3 nanoparticles for efficient photocatalytic H2 evolution under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(28): 14794-14800. [19] XIN H, PANG Q, GAO D L, et al. Mn ions' site and valence in PbTiO3 based on the native vacancy defects[J]. Condensed Matter Physics, 2021, 24(2): 23705. [20] KUMA S, WOLDEMARIAM M M. Structural, electronic, lattice dynamic, and elastic properties of SnTiO3 and PbTiO3 using density functional theory[J]. Advances in Condensed Matter Physics, 2019, 2019: 1-12. [21] HACHEMI A, HACHEMI H, FERHAT-HAMIDA A, et al. Elasticity of SrTiO3 perovskite under high pressure in cubic, tetragonal and orthorhombic phases[J]. Physica Scripta, 2010, 82(2): 025602. [22] LI Z, GRIMSDITCH M, FOSTER C M, et al. Dielectric and elastic properties of ferroelectric materials at elevated temperature[J]. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1433-1438. [23] SÁGHI-SZABÓ G, COHEN R E, KRAKAUER H. First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3[J]. Physical Review B, 1999, 59(20): 12771-12776. [24] PERDEW J P, WANG Y E. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249. [25] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [26] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [27] ERNZERHOF M, BURKE K, PERDEW J P. Density functional theory, the exchange hole, and the molecular bond[M]//Theoretical and Computational Chemistry. Amsterdam: Elsevier, 1996: 207-238. [28] PERDEW J P, ERNZERHOF M, ZUPAN A, et al. Nonlocality of the density functional for exchange and correlation: physical origins and chemical consequences[J]. The Journal of Chemical Physics, 1998, 108(4): 1522-1531. [29] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [30] TAIB M F M, YAAKOB M K, BADRUDIN F W, et al. First-principles comparative study of the electronic and optical properties of tetragonal (P4mm) ATiO3 (A=Pb, Sn, Ge)[J]. Integrated Ferroelectrics, 2014, 155(1): 23-32. [31] WANG Q J, WANG J B, ZHONG X L, et al. Magnetism mechanism in ZnO and ZnO doped with nonmagnetic elements X (X=Li, Mg, and Al): a first-principles study[J]. Applied Physics Letters, 2012, 100(13): 673-677. [32] CHEN H, LI X C, WAN R D, et al. A DFT study on modification mechanism of (N, S) interstitial co-doped rutile TiO2[J]. Chemical Physics Letters, 2018, 695: 8-18. [33] BOUHEMADOU A. First-principles study of structural, electronic and elastic properties of Nb4AlC3[J]. Brazilian Journal of Physics, 2010, 40(1): 52-57. [34] CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275-1281. [35] VOIGT W. Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), edited by bg teubner and jw edwards, leipzig berlin[J]. Ann Arbor, Mich, 1928. [36] REUSS A. Berechnung der flieβgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49-58. [37] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. [38] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry[J]. Journal of Applied Physics, 1980, 51(3): 1520-1524. [39] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. [40] YADAV H O. Optical and electrical properties of sol-gel derived thin films of PbTiO3[J]. Ceramics International, 2004, 30(7): 1493-1498. [41] 高 妍, 董海涛, 张小可, 等. (AlxGa1-x)2O3结构、电子和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1674-1680+1719. GAO Y, DONG H T, ZHANG X K, et al. First-principle study on structure, electronic and optical properties of (AlxGa1-x)2O3[J]. Journal of Synthetic Crystals, 2023, 52(9): 1674-1680+1719 (in Chinese). |