欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (2): 258-266.

• 研究论文 • 上一篇    下一篇

Ni,Cu,Zn掺杂四方相PbTiO3力学性能、电子结构与光学性质的第一性原理研究

王云杰1,2, 张志远1,2, 文杜林1,2, 吴侦成1,2, 苏欣1,2   

  1. 1.伊犁师范大学物理科学与技术学院,伊宁 835000;
    2.伊犁师范大学新疆凝聚态相变与微结构实验室,伊宁 835000
  • 收稿日期:2023-08-02 出版日期:2024-02-15 发布日期:2024-02-04
  • 通信作者: 苏 欣,博士,副教授。E-mail:suxin_phy@sina.com
  • 作者简介:王云杰(1999—),男,新疆维吾尔自治区人,硕士研究生。E-mail:1575469121@qq.com
  • 基金资助:
    伊犁师范大学科研专项提升重点项目(22XKZZ21);伊犁师范大学科研项目(2022YSZD004);伊犁师范大学大学生创新训练项目(S202110764006,YS2022G018);新疆伊犁科技计划(YZ2022Y002);新疆维吾尔自治区天山英才计划第三期(2021-2023)

First Principles Study on Mechanical Properties, Electronic Structure and Optical Properties of Ni, Cu, Zn Doped Tetragonal PbTiO3

WANG Yunjie1,2, ZHANG Zhiyuan1,2, WEN Dulin1,2, WU Zhencheng1,2, SU Xin1,2   

  1. 1. School of Physical Science and Technology, Yili Normal University, Yining 835000, China;
    2. Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China
  • Received:2023-08-02 Online:2024-02-15 Published:2024-02-04

摘要: 采用第一性原理研究了四方相钙钛矿PbTiO3以及Ni、Cu、Zn掺杂PbTiO3的力学性能、电子结构和光学性质。力学性能计算结果表明,Ni掺杂PbTiO3的体积模量、剪切模量及弹性模量在三种掺杂体系中最大。Ni掺杂体系德拜温度最高。G/B为材料的脆、韧性判据,Zn掺杂PbTiO3G/B值最大,说明化学键定向性最高。Ni、Zn掺杂体系的G/B范围为0.56<G/B<1.75,均为脆性材料,而本征PbTiO3和Cu掺杂体系G/B值小于0.56,均为韧性材料。通过电子结构分析,发现掺杂体系相比于本征体系带隙变窄,跃迁能量减小。Ni掺入使得PbTiO3费米能级处出现杂质能级,而Cu、Zn掺杂PbTiO3价带顶上移,费米能级进入价带,使得Cu、Zn掺杂PbTiO3呈现p型导电特性。从复介电函数、光学反射谱和吸收谱分析中发现,掺杂体系的静介电常数相较于本征体系有所提升。Ni、Cu、Zn的掺杂使得PbTiO3吸收范围扩展到红外波段,且增强了可见光波段的吸收强度,Cu掺杂PbTiO3材料的光催化特性在本征PbTiO3和三种单掺PbTiO3材料中是最好的。

关键词: 第一性原理, PbTiO3, 掺杂, 力学性能, 电子结构, 光学特性

Abstract: The mechanical property, electronic structure, and optical properties of tetragonal perovskite PbTiO3 and Ni, Cu, Zn-doped PbTiO3 were studied by first principles. The mechanical property calculations show that Ni-doped PbTiO3 exhibits the highest values for volume modulus, shear modulus, and elastic modulus among the three doping systems. Notably, the Ni-doped system also has the highest Debye temperature. The G/B ratio represents the material's brittleness and toughness, which is highest for Zn-doped PbTiO3, indicating the highest degree of chemical bond orientation. The G/B range for Ni and Zn-doped systems is 0.56<G/B<1.75, indicating brittle materials, while the intrinsic PbTiO3 and Cu-doped systems have G/B values less than 0.56, indicating ductile materials. The electronic structure reveals that the doped systems have narrower band gaps and reduced transition energies compared to the intrinsic system. The introduction of Ni introduces impurity levels at the Fermi energy level in PbTiO3, while Cu and Zn doping shifts the valence band maximum upwards, causing the Fermi level to enter the valence band and resulting in p-type conductivity for Cu and Zn-doped PbTiO3. The doping of Ni, Cu and Zn expands the absorption range of PbTiO3 to the infrared region and enhances the absorption intensity in the visible light range. Among the intrinsic PbTiO3 and three single-doped PbTiO3 materials, Cu-doped PbTiO3 exhibits the best photocatalytic properties.

Key words: first principle, PbTiO3, doping, mechanical property, electronic structure, optical property

中图分类号: