人工晶体学报 ›› 2024, Vol. 53 ›› Issue (4): 600-619.
张家豪, 王德修, 李玉琦, 徐英, 梁士明, 宋学省
收稿日期:
2023-08-15
出版日期:
2024-04-15
发布日期:
2024-04-19
通信作者:
梁士明,副教授。E-mail:lsmwind@163.com; 宋学省,高级实验师。E-mail:cctv831@126.com
作者简介:
张家豪(2002—),男,山东省人。E-mail:2716466987@qq.com
基金资助:
ZHANG Jiahao, WANG Dexiu, LI Yuqi, XU Ying, LIANG Shiming, SONG Xuesheng
Received:
2023-08-15
Online:
2024-04-15
Published:
2024-04-19
摘要: 本文深入探讨了二硫化钼(MoS2)纳米材料的合成策略及其在能源转换与存储等领域的应用前景,综合分析包括溶剂热法、溶胶-凝胶法在内的多种合成方法,揭示了这些方法对MoS2纳米结构形态和性能的具体影响。研究表明,通过精确控制合成条件,可以制备出具有优化电子性质和表面活性的MoS2纳米材料。在锂离子电池和光电探测器等应用中,这些材料展现了卓越的性能,特别是在增强电池充放电循环稳定性和提升光电转换效率方面。本文进一步讨论了MoS2应用发展面临的挑战,特别是在材料合成可扩展性和性能一致性方面。最后,文章对未来的研究方向进行了展望,提出了创新合成策略和优化材料结构的研究方向,进一步拓宽MoS2在高性能能源设备中的应用潜力。
中图分类号:
张家豪, 王德修, 李玉琦, 徐英, 梁士明, 宋学省. 二硫化钼纳米材料的制备方法及应用研究进展[J]. 人工晶体学报, 2024, 53(4): 600-619.
ZHANG Jiahao, WANG Dexiu, LI Yuqi, XU Ying, LIANG Shiming, SONG Xuesheng. Research Progress on the Preparation Method and Application of Molybdenum Disulfide Nanomaterials[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 600-619.
[1] 王 轩, 宋 礼, 陈 露, 等. 二硫化钼纳米片的研究进展[J]. 材料化学前沿, 2014(4): 49-62. WANG X, SONG L, CHEN L, et al. Research Progress of MoS2 nanosheets[J]. Materials Chemistry Frontiers, 2014(4): 49-62 (in Chinese). [2] GAN X T, GAO Y D, FAI MAK K, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 2013, 103(18): 181119. [3] HU J T, YU L A, DENG J A, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4(3): 242-250. [4] WEI G H, STANEV T K, CZAPLEWSKI D A, et al. Silicon-nitride photonic circuits interfaced with monolayer MoS2[J]. Applied Physics Letters, 2015, 107(9): 091112. [5] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947. [6] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. [7] WANG M. Preparation and photocatalytic hydrogen production performance of molybdenum disulfide quantum dot-graphene oxide composites[J]. Journal of Northwest Normal University (Natural Science), 2018, 54(1): 38-42. [8] SPLENDIANI A, SUN L A, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. [9] LIN Z T, LONG L C, YANG Y, et al. Numerical simulation of the thermal stress of layered molybdenum disulfide[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516028. [10] ZHONG W, QIAN W, YAN S M, et al. Synthesis, Optical and hydrogen evolution catalytic properties of monolayer MoS2 quantum dots[J]. Journal of Jilin Normal University (Natural Science Edition), 2016, 37(3): 1-7. [11] KE S K, LAI Y L, LI L H, et al. Molybdenum disulfide quantum dots attenuates endothelial-to-mesenchymal transition by activating TFEB-mediated lysosomal biogenesis[J]. ACS Biomaterials Science & Engineering, 2019, 5(2): 1057-1070. [12] XU Y L, NIU X Y, CHEN H L, et al. Switch-on fluorescence sensor for ascorbic acid detection based on MoS2 quantum dots-MnO2 nanosheets system and its application in fruit samples[J]. Chinese Chemical Letters, 2017, 28(2): 338-344. [13] HU W B, ZHANG W, GU C D. Review of molybdenum disulfide photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006. [14] MUKHERJEE S, MAITI R S, KATIYAR A K, et al. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices[J]. Scientific Reports, 2016, 6: 29016. [15] GOPALAKRISHNAN D, DAMIEN D, SHAIJUMON M M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets[J]. ACS Nano, 2014, 8(5): 5297-5303. [16] GUO X R, WANG Y, WU F Y, et al. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide[J]. Analyst, 2015, 140(4): 1119-1126. [17] NIU Y, JIAO W C, WANG R G, et al. Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing[J]. Journal of Materials Chemistry A, 2016, 4(21): 8198-8203. [18] ZHANG J H. Hg2+ detection based on functionalized L-cysteine MQDs fluorescent quantum dots[J]. Chinese Journal of Analytical Sciences, 2018, 34(1): 17-21. [19] LI Q Q, YUE L T, WAN G F, et al. “Bottom-up” one-step hydrothermal preparation of molybdenum disulfide quantum dots and their properties[J]. Chemical Reagents. 2018, 40(12): 1126-1130. [20] DAI W H, DONG H F, FUGETSU B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging[J]. Small, 2015, 11(33): 4158-4164. [21] AN S J, PARK D Y, LEE C, et al. Facile preparation of molybdenum disulfide quantum dots using a femtosecond laser[J]. Applied Surface Science, 2020, 511: 145507. [22] COLOMA A, DEL POZO M, MARTÍNEZ-MORO R, et al. MoS2 quantum dots for on-line fluorescence determination of the food additive allura red[J]. Food Chemistry, 2021, 345: 128628. [23] HUANG H, DU C C, SHI H Y, et al. Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence[J]. Particle & Particle Systems Characterization, 2015, 32(1): 72-79. [24] CHEN X, PARK Y J, KANG M, et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors[J]. Nature Communications, 2018, 9: 1690. [25] 张浩翔. 水热法制备纳米二硫化钼及其性能研究[D]. 南京: 南京邮电大学, 2020. ZHANG H X. Study of the hydrothermal synthesis of molybdenum disulfide and properties characterization[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese). [26] AUTÈS G, ISAEVA A, MORESCHINI L, et al. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4[J]. Nature Materials, 2016, 15(2): 154-158. [27] GENTILE P, CUOCO M, ORTIX C. Edge states and topological insulating phases generated by curving a nanowire with rashba spin-orbit coupling[J]. Physical Review Letters, 2015, 115(25): 256801. [28] WEI W, SAMAD L, CHOI J W, et al. Synthesis of molybdenum disulfide nanowire arrays using a block copolymer template[J]. Chemistry of Materials, 2016, 28(11): 4017-4023. [29] XU H, LIU S L, DING Z J, et al. Oscillating edge states in one-dimensional MoS2 nanowires[J]. Nature Communications, 2016, 7: 12904. [30] CHEN Y M, YU X Y, LI Z, et al. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries[J]. Science Advances, 2016, 2(7): e1600021. [31] CHITHAIAH P, GHOSH S, IDELEVICH A, et al. Solving the “MoS2 nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production[J]. ACS Nano, 2020, 14(3): 3004-3016. [32] LAUHON L J, GUDIKSEN M S, WANG D L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures[J]. Nature, 2002, 420(6911): 57-61. [33] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. [34] COLEMAN J N, AL E. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. ChemInform, 2011, 42(18): 568-571. [35] XIE J F, ZHANG J J, LI S A, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-17888. [36] MA J, FAN H, ZHANG W, et al. High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method[J]. Sensors and Actuators B: Chemical, 2020, 305: 127456. [37] XUE D P, ZHANG S S, ZHANG Z Y. Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets[J]. Materials Letters, 2019, 252: 169-172. [38] PATIL S P, PATIL V L, SHENDAGE S S, et al. Spray pyrolyzed indium oxide thick films as NO2 gas sensor[J]. Ceramics International, 2016, 42(14): 16160-16168. [39] JOSHI B, KHALIL A M E, ZHANG S W, et al. Application of 2D MoS2 nanoflower for the removal of emerging pollutants from water[J]. ACS Eng, 2023. https://doi.org/10.1021/acsengineeringau.3c00032. [40] WANG S Q, LI G H, DU G D, et al. Hydrothermal synthesis of molybdenum disulfide for lithium ion battery applications[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 910-913. [41] ZHOU M, DONG S J. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors[J]. Accounts of Chemical Research, 2011, 44(11): 1232-1243. [42] ZONG X, YAN H J, WU G P, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. Journal of the American Chemical Society, 2008, 130(23): 7176-7177. [43] CHANG K, CHEN W X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720-4728. [44] KIBSGAARD J, CHEN Z B, REINECKE B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969. [45] VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12(6): 554-561. [46] LIANG X H, ZHANG X M, LIU W, et al. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance[J]. Journal of Materials Chemistry C, 2016, 4(28): 6816-6821. [47] TANG G G, WANG Y J, CHEN W, et al. Hydrothermal synthesis and characterization of novel flowerlike MoS2 hollow microspheres[J]. Materials Letters, 2013, 100: 15-18. [48] TAN Y H, YU K, YANG T, et al. The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties[J]. Journal of Materials Chemistry C, 2014, 2(27): 5422-5430. [49] WANG M, LI G D, XU H Y, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1003-1008. [50] YU L M, GUO F, LIU S, et al. Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties[J]. Materials Letters, 2016, 183: 122-126. [51] CAMACHO-BRAGADO G A, ELECHIGUERRA J L, YACAMAN M J. Characterization of low dimensional molybdenum sulfide nanostructures[J]. Materials Characterization, 2008, 59(3): 204-212. [52] DENG J, LI H B, WANG S H, et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nature Communications, 2017, 8: 14430. [53] CHEN W S, GU J J, DU Y P, et al. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Advanced Functional Materials, 2020, 30(25): 2000551. [54] LIU M Q, WANG J A, KLYSUBUN W, et al. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution[J]. Nature Communications, 2021, 12: 5260. [55] WANG X, CHU C C, SHEN L, et al. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels[J]. Sensors and Actuators B: Chemical, 2015, 206: 30-36. [56] LI H, YIN Z Y, HE Q Y, et al. Layered nanomaterials: fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 2. [57] LI Y X, SONG Z X, LI Y N, et al. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors[J]. Sensors and Actuators B: Chemical, 2019, 282: 259-267. [58] HE Q Y, ZENG Z Y, YIN Z Y, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999. [59] CUI S M, WEN Z H, HUANG X K, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11(19): 2305-2313. [60] HE Q Y, ZENG W, WANG Y, et al. Large scale synthesis of flower-like SnO2 nanostructures via a facile hydrothermal route[J]. Materials Letters, 2013, 113: 42-45. [61] XU X M, LI X, ZHANG H J, et al. Synthesis, characterization and gas sensing properties of porous flower-like indium oxide nanostructures[J]. RSC Advances, 2015, 5(38): 30297-30302. [62] YU L M, GUO F, LIU Z Y, et al. Facile synthesis of three dimensional porous ZnO films with mesoporous walls and gas sensing properties[J]. Materials Characterization, 2016, 112: 224-228. [63] YI J, LI M L, ZHOU H X, et al. Enhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor deposition[J]. Ceramics International, 2020, 46(15): 23813-23819. [64] NIU Y, WANG P, ZHANG M Z. Tuning the spin polarization in monolayer MoS2 through (Y, Yb) co-doping[J]. New Journal of Chemistry, 2020, 44(46): 20316-20321. [65] CHEN Y Y, LIU F J, WANG J W, et al. Large modulation of mobile carriers within MoS2 by decoration of molecular dopants to enhance its gas sensing[J]. Applied Surface Science, 2020, 527: 146709. [66] JENISHA M A, KAVIRAJAN S, HARISH S, et al. Multiple approaches of band engineering and mass fluctuation of solution-processed n-type re-doped MoS2 nanosheets for enhanced thermoelectric power factor[J]. Journal of Colloid and Interface Science, 2024, 653: 1150-1165. [67] CHO S Y, KOH H J, YOO H W, et al. Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2[J]. ACS Sensors, 2017, 2(1): 183-189. [68] PHAM T, LI G H, BEKYAROVA E, et al. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection[J]. ACS Nano, 2019, 13(3): 3196-3205. [69] MA D W, JU W W, LI T X, et al. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study[J]. Applied Surface Science, 2016, 383: 98-105. [70] PANCHU S J, RAJU K, SINGH P, et al. High mass loading of flowerlike Ni-MoS2 microspheres toward efficient intercalation pseudocapacitive electrodes[J]. ACS Applied Energy Materials, 2023, 6(4): 2187-2198. [71] MA Y D, DAI Y, GUO M, et al. Graphene adhesion on MoS2 monolayer: an ab initio study[J]. Nanoscale, 2011, 3(9): 3883-3887. [72] MA L B, HU Y, ZHU G Y, et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction[J]. Chemistry of Materials, 2016, 28(16): 5733-5742. [73] SAAB M, RAYBAUD P. Tuning the magnetic properties of MoS2 single nanolayers by 3 d metals edge doping[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10691-10697. [74] LI G Q, ZHANG D, QIAO Q A, et al. All the catalytic active sites of MoS2 for hydrogen evolution[J]. Journal of the American Chemical Society, 2016, 138(51): 16632-16638. [75] DENG J, LI H B, XIAO J P, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. [76] GAO G P, SUN Q A, DU A J. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16761-16766. [77] WU X H, ZHAO G Q, ZHAO Q, et al. Investigating the tribological performance of nanosized MoS2 on graphene dispersion in perfluoropolyether under high vacuum[J]. RSC Advances, 2016, 6(101): 98606-98610. [78] ZENG Q F. Superlow friction and diffusion behaviors of a steel-related system in the presence of nano lubricant additive in PFPE oil[J]. Journal of Adhesion Science and Technology, 2019, 33(9): 1001-1018. [79] XUE Y D, CAI W Q, ZHENG S L, et al. W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media[J]. Catalysis Science & Technology, 2017, 7(23): 5733-5740. [80] LIU G, ZHAO Y N, SUN C H, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J]. Angewandte Chemie International Edition, 2008, 47(24): 4516-4520. [81] KHAN R, KIM T J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts[J]. Journal of Hazardous Materials, 2009, 163(2/3): 1179-1184. [82] LI H, YIN Z Y, HE Q Y, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67. [83] LEMBKE D, KIS A. Breakdown of high-performance monolayer MoS2 transistors[J]. ACS Nano, 2012, 6(11): 10070-10075. [84] SRIRAM B, BABY J N, HSU Y F, et al. In situ synthesis of a bismuth vanadate/molybdenum disulfide composite: an electrochemical tool for 3-nitro-l-tyrosine analysis[J]. Inorganic Chemistry, 2022, 61(35): 14046-14057. [85] WANG Y H, WANG D C, DONG S Q, et al. A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection[J]. Electrochimica Acta, 2022, 414: 140207. [86] HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830. [87] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318. [88] CAO L J, YANG S B, GAO W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small, 2013, 9(17): 2905-2910. [89] JALALI M, MOAKHAR R S, ABDELFATTAH T, et al. Nanopattern-assisted direct growth of peony-like 3D MoS2/Au composite for nonenzymatic photoelectrochemical sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7411-7422. [90] ZHANG N, GAN S Y, WU T S, et al. Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: an excellent hydrogen evolution 3D cathode[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12193-12202. [91] TAN C L, LAI Z C, ZHANG H A. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Advanced Materials, 2017, 29(37): 1701392. [92] FU J N, ZHU W D, LIU X M, et al. Self-activating anti-infection implant[J]. Nature Communications, 2021, 12(1): 6907. [93] LAVAISSE L M, HOLLMANN A, NAZARENO M A, et al. Zeta potential changes of Saccharomyces cerevisiae during fermentative and respiratory cycles[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 63-69. [94] LUAN X X, ZHU K L, ZHANG X A, et al. MoS2-2xSe2x nanosheets grown on hollow carbon spheres for enhanced electrochemical activity[J]. Langmuir, 2021, 37(27): 8314-8322. [95] LIU T, ZHANG L Y, YOU W, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407. [96] YANG D, CAO L Y, FENG L L, et al. Controlled synthesis of V-doped heterogeneous Ni3S2/NiS nanorod arrays as efficient hydrogen evolution electrocatalysts[J]. Langmuir, 2021, 37(1): 357-365. [97] LI Y, HORIA R, TAN W X, et al. Mesoporous titanium oxynitride monoliths from block copolymer-directed self-assembly of metal-urea additives[J]. Langmuir, 2020, 36(36): 10803-10810. [98] JIAN J H, LI Y, BI H, et al. Aluminum decoration on MoS2 ultrathin nanosheets for highly efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4547-4554. |
[1] | 张蕊, 王幼琪, 沈培智. 用于超级电容器的二硫化钼纳米片制备及电化学性能研究[J]. 人工晶体学报, 2023, 52(4): 663-670. |
[2] | 崔玉青, 唐军利, 张晓. Ar气保护固相合成花状二硫化钼工艺研究[J]. 人工晶体学报, 2022, 51(8): 1445-1450. |
[3] | 赵子楠, 武金涛, 梁智健, 朱亚彬, 刘歌, 陈云琳. 溅射羽辉与基底夹角对掺氧二硫化钼薄膜光学性质的影响[J]. 人工晶体学报, 2022, 51(11): 1871-1877. |
[4] | 刘奇超, 张会. 低维第五主族纳米材料的研究进展:从结构性质到制备应用[J]. 人工晶体学报, 2021, 50(3): 578-586. |
[5] | 马占辉;姚杰;张振业;张行;张晓君;孙墨杰. 基于二硫化钼/石墨烯复合材料的汞蒸气传感器[J]. 人工晶体学报, 2020, 49(6): 1107-1111. |
[6] | 陈云, 蔡厚道. 单层n型MoS2/p型c-Si异质结太阳电池数值模拟[J]. 人工晶体学报, 2020, 49(12): 2287-2291. |
[7] | 庄文昌, 张洁, 李钦堂, 朱文友, 贾志泰. 氧化镓纳米材料的制备及其在光电探测方面的应用研究进展[J]. 人工晶体学报, 2020, 49(12): 2376-2382. |
[8] | 杨帆;王美琪;关卫省. Ⅲ族氮化物半导体材料的制备及应用研究进展[J]. 人工晶体学报, 2019, 48(7): 1203-1207. |
[9] | 陈俊明;鲍菊生;王桂玲;刘翠翠;姚悦;过家好;汪徐春;井凤阳. 超级电容器用MnO2基复合电极材料研究现状与展望[J]. 人工晶体学报, 2019, 48(6): 985-989. |
[10] | 马志军;高静;翁兴媛;程亮;关智浩;王秀兰. 不同钴原料制备尖晶石型钴铁氧体及吸波性能研究[J]. 人工晶体学报, 2019, 48(6): 1019-1024. |
[11] | 王潇雅;葛飞洋;南海燕;肖少庆. 黑磷-二硫化钼异质结光电流特性的研究[J]. 人工晶体学报, 2019, 48(11): 2025-2031. |
[12] | 郭会师;李文凤;高振禄;马丽君;桂阳海. 热处理温度对SiC纳米材料形貌和发光性能的影响[J]. 人工晶体学报, 2019, 48(11): 2119-2122. |
[13] | 刘明雪;冯少朋;肖少庆;南海燕;张秀梅;顾晓峰. 基于温和氧等离子体实现硫化钼P型掺杂的研究[J]. 人工晶体学报, 2018, 47(9): 1778-1783. |
[14] | 凌妍;时红艳;田瑞焕;李轩;图德格. 衬底对单层二硫化钼光学性质的影响[J]. 人工晶体学报, 2018, 47(7): 1463-1467. |
[15] | 桂阳海;杨乐乐;王海燕;李晓蒙;张宏忠. 无机盐添加剂对纳米WO3/rGO气敏性能的影响[J]. 人工晶体学报, 2018, 47(10): 2115-2120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||