欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (4): 649-655.

• 研究论文 • 上一篇    下一篇

高热稳定CaGdAlO4∶Er3+/Yb3+荧光粉的上转换发光及其温度传感性能

李玉强1, 杨健2, 王帅2, 郑基源1, 赵炎1, 周恒为1, 刘玉学2   

  1. 1.伊犁师范大学物理科学与技术学院,新疆凝聚态相变与微结构实验室,伊宁 835000;
    2.东北师范大学物理学院,长春 130024
  • 收稿日期:2023-11-01 出版日期:2024-04-15 发布日期:2024-04-19
  • 通信作者: 刘玉学,博士,教授。E-mail:yxliu@nenu.edu.cn
  • 作者简介:李玉强(1978—),男,新疆维吾尔自治区人,博士,副教授。E-mail:250961713@qq.com
  • 基金资助:
    伊犁师范大学校级科研项目(2023YSZD005)

Upconversion Luminescence and Temperature Sensing Properties of High Thermal Stabilized CaGdAlO4∶Er3+/Yb3+ Phosphors

LI Yuqiang1, YANG Jian2, WANG Shuai2, ZHENG Jiyuan1, ZHAO Yan1, ZHOU Hengwei1, LIU Yuxue2   

  1. 1. Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, School of Physical Science and Technology, Yili Normal University, Yining 835000, China;
    2. School of Physics, Northeast Normal University, Changchun 130024, China
  • Received:2023-11-01 Online:2024-04-15 Published:2024-04-19

摘要: 获得具有良好热稳定性和发光性能的非接触式光学温度传感材料是目前的研究热点之一,本工作通过高温固相法制备了Er3+/Yb3+共掺CaGdAlO4∶Erx,Yb0.10(x=0.006、0.008、0.010、0.012、0.014)荧光粉,尺寸大小分布在0.6~4.2 μm。在980 nm激光激发下,该荧光粉在500~700 nm发射谱由两个发射带组成,528和550 nm处两个较强的绿光发射带,归属于Er3+2H11/24I15/24S3/24I15/2能级跃迁,663 nm处较弱的红光发射带,归属于Er3+4F9/24I15/2能级跃迁。上转换发光强度最大组分为CaGdAlO4∶Er0.010,Yb0.10。300~573 K变温发射谱表明,基于荧光强度比FIR528/550参数,温度传感绝对灵敏度SA从44.4×10-4 K-1(@300 K)先增大到52.0×10-4 K-1(@445 K)随后减小到49.0×10-4 K-1(@573 K)。相对灵敏度SR则从0.95×10-2 K-1(@300 K)单调减小到0.27×10-2 K-1(@573 K)。冷热循环实验表明该材料的热重复性优于98%。结果表明,CaGdAlO4∶Er0.010,Yb0.10荧光粉在光学温度传感领域具有潜在的应用前景。

关键词: 稀土离子, 荧光粉, Er3+/Yb3+共掺, 上转换, 荧光强度比, 温度传感, 高温固相法

Abstract: Obtaining non-contact optical temperature sensing materials with good thermal stability and luminescent properties is one of the current research hotspots. In this work, Er3+/Yb3+ co doped CaGdAlO4∶Erx,Yb0.10(x=0.006, 0.008, 0.010, 0.012, 0.014) single-phase phosphors were prepared by high-temperature solid-state method. For CaGdAlO4∶Erx,Yb0.10 powders with different Er3+ doping concentrations, the particle sizes range from 0.6 μm to 4.2 μm. When the samples are under 980 nm laser excitation, there exists two emission bands in the 500~575 nm range and one emission band in the 630~690 nm. The two stronger green emission bands located at 528 and 550 nm, and they could be attributed to 2H11/24I15/2 and 4S3/24I15/2 transitions, while the weaker red emission band at 663 nm could be attributed to 4F9/24I15/2 transition of Er3+. The optimal upconversion luminescence intensity was obtained from CaGdAlO4∶Er0.010,Yb0.10. In the temperature range of 300~573 K, based on fluorescence intensity ratio FIR528/550 parameters, the absolute sensitivity SA increases from 44.4×10-4 K-1(@300 K) to 52.0×10-4 K-1(@445 K), and then decreases to 49.0×10-4 K-1(@573 K). The relative sensitivity SR decreases monotonically from 0.95×10-2 K-1(@300 K) to 0.27×10-2 K-1(@573 K). Furthermore, the heating-cooling cycling experiment shows that the thermal repeatability of temperature sensing for the phosphor is better than 98%. The results demonstrate that CaGdAlO4∶Er0.010,Yb0.10 phosphors have potential applications in the field of optical temperature sensing.

Key words: rare earth ion, phosphor, Er3+/Yb3+ co doping, upconversion, fluorescence intensity ratio, temperature sensing, high-temperature solid-state method

中图分类号: