人工晶体学报 ›› 2024, Vol. 53 ›› Issue (6): 930-946.
李玉琦1, 徐英1, 梁士明1,2,3
收稿日期:
2024-01-03
出版日期:
2024-06-15
发布日期:
2024-06-20
通信作者:
梁士明,博士,副教授。E-mail:lsmwind@163.com
作者简介:
李玉琦(2002—),女,山东省人。E-mail:3217108726@qq.com
基金资助:
LI Yuqi1, XU Ying1, LIANG Shiming1,2,3
Received:
2024-01-03
Online:
2024-06-15
Published:
2024-06-20
摘要: 本文系统回顾了氧化铟(In2O3)基气敏材料的研究进展,并着重探讨了其在环境监测和安全领域的潜在应用。通过对氧化铟的结构、性质及其气敏传感机制的深入分析,详细介绍了不同合成方法(如水热法、化学气相沉积法等)对材料微观结构及性能的影响。本文还讨论了元素掺杂、材料负载、半导体复合等改性手段在提高气敏性能方面的应用,并分析了当前的研究挑战及未来发展方向,为氧化铟基气敏材料的进一步研究和应用提供了重要的视角和方向。
中图分类号:
李玉琦, 徐英, 梁士明. 氧化铟基气敏材料的研究进展[J]. 人工晶体学报, 2024, 53(6): 930-946.
LI Yuqi, XU Ying, LIANG Shiming. Research Progress of Indium Oxide-Based Gas Sensitive Materials[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 930-946.
[1] LEE K, GURUDATT N G, HEO W, et al. Ultrasensitive detection and risk assessment of di(2-ethylhexyl) phthalate migrated from daily-use plastic products using a nanostructured electrochemical aptasensor[J]. Sensors and Actuators B: Chemical, 2022, 357: 131381. [2] GOSWAMI P P, ROTAKE D R, SINGH S G. 2-D material enhanced ultrasensitive electrochemical sensing of Pro-BNP peptide towards the risk-assessment of human heart[J]. Sensors and Actuators B: Chemical, 2022, 357: 131382. [3] SHOJAEIFARD Z, HEMMATEENEJAD B. Deep and dip: immobilization on paper substrate using deep eutectic solvent to fabricate reusable dip immersion colorimetric sensor arrays[J]. Sensors and Actuators B: Chemical, 2022, 356: 131379. [4] ZHANG N, YANG J, HU C G. Laser-scribed graphene sensors on nail polish with tunable composition for electrochemical detection of nitrite and glucose[J]. Sensors and Actuators B: Chemical, 2022, 357: 131394. [5] URASINSKA-WOJCIK B, VINCENT T A, GARDNER J W. H2S sensing properties of WO3 based gas sensor[J]. Procedia Engineering, 2016, 168: 255-258. [6] MENG F L, HOU N N, GE S, et al. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)[J]. Journal of Alloys and Compounds, 2015, 626: 124-130. [7] YAN H Y, TIAN X Q, SUN J, et al. Enhanced sensing properties of CuO nanosheets for volatile organic compounds detection[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(1): 280-287. [8] SONG L F, YANG L P, WANG Z, et al. One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration[J]. Sensors and Actuators B: Chemical, 2019, 283: 793-801. [9] KUMAR M, BHATT V, YUN J H. Hierarchical 3D micro flower-like Co3O4 structures for NO2 detection at room temperature[J]. Physics Letters A, 2020, 384(19): 126477. [10] KUMAR V, MAJHI S M, KIM K H, et al. Advances in In2O3-based materials for the development of hydrogen sulfide sensors[J]. Chemical Engineering Journal, 2021, 404: 126472. [11] GURLO A, KROLL P, RIEDEL R. Metastability of corundum-type In2O3[J]. Chemistry, 2008, 14(11): 3306-3310. [12] ISLAM M A, MOU J R, ROY R C, et al. High near-infrared transmittance, high intense orange luminescence in vanadium doped indium oxide (V:In2O3) thin films deposited by electron beam evaporation[J]. Optik, 2018, 157: 208-216. [13] MIRZAEI A, KIM S S, KIM H W. Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances[J]. Journal of Hazardous Materials, 2018, 357: 314-331. [14] WANG W H, WANG X S, MA Z G, et al. Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 A cm-2[J]. ACS Catalysis, 2023, 13(1): 796-802. [15] REDDEPPA M, PARK B G, NAM D J, et al. Photovoltaic photodetectors based on In2O3/InN core-shell nanorods[J]. ACS Applied Nano Materials, 2022, 5(5): 7418-7426. [16] SHANKER G S, PANCHAL R A, OGALE S, et al. G-C3N4:Sn-doped In2O3 (ITO) nanocomposite for photoelectrochemical reduction of water using solar light[J]. Journal of Solid State Chemistry, 2020, 285: 121187. [17] LI Z J, YAN S N, WU Z L, et al. Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22746-22755. [18] IBRAHIM H, TEMERK Y. Synergistic electrocatalytic activity of In2O3@FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form[J]. Talanta, 2020, 208: 120362. [19] LIN C F, KAO C H, CHAN YU L, et al. Comparison between performances of In2O3 and In2TiO5-based EIS biosensors using post plasma CF4 treatment applied in glucose and urea sensing[J]. Scientific Reports, 2019, 9: 3078. [20] LIU X Q, CHEN Z J, TIAN K, et al. Fe3+ promoted the photocatalytic defluorination of perfluorooctanoic acid (PFOA) over In2O3[J]. ACS ES&T Water, 2021, 1(11): 2431-2439. [21] XIAN T, LI H Q, SUN X F, et al. S-scheme In2O3 nanoparticle/BiOBr nanoplate heterojunctions for improved photocatalytic dye degradation and Cr(VI) reduction[J]. ACS Applied Nano Materials, 2022, 5(10): 15260-15271. [22] ZHANG Q Y, LI Z J, CHEN S Y, et al. Improved photocatalytic activities of porous In2O3 with large surface area by coupling with K-modified CuO for degrading pollutants[J]. Catalysis Today, 2020, 339: 403-410. [23] XU H C, WANG Y, DONG X L, et al. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2019, 257: 117932. [24] DU Q C, MA J Q, SHAO X Z, et al. Core-shell structured TiO2@In2O3 for highly active visible-light photocatalysis[J]. Chemical Physics Letters, 2019, 714: 208-212. [25] WANG J Y, LIU C Y, SENFTLE T P, et al. Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction[J]. ACS Catalysis, 2020, 10(5): 3264-3273. [26] KUMAR M, BHATT V, KIM J, et al. Solvent and catalyst-free synthesis of In2O3 octahedron using single-step thermal decomposition technique for NO2 detection[J]. Journal of Alloys and Compounds, 2021, 877: 160161. [27] CHU D W, ZENG Y P, JIANG D L, et al. Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes[J]. Nanotechnology, 2007, 18(43): 435605. [28] SHUJAH T, IKRAM M, BUTT A R, et al. H2S gas sensor based on WO3 nanostructures synthesized via aerosol assisted chemical vapor deposition technique[J]. Nanoscience and Nanotechnology Letters, 2019, 11(9): 1247-1256. [29] LIN G, WANG H, LI X F, et al. Chestnut-like CoFe2O4@SiO2@In2O3 nanocomposite microspheres with enhanced acetone sensing property[J]. Sensors and Actuators B: Chemical, 2018, 255: 3364-3373. [30] ZAHID R, MANZOOR M, RAFIQ A, et al. Influence of iron doping on structural, optical and magnetic properties of TiO2 nanoparticles[J]. Electronic Materials Letters, 2018, 14(5): 587-593. [31] GU F B, LI C J, HAN D M, et al. Manipulating the defect structure (VO) of In2O3 nanoparticles for enhancement of formaldehyde detection[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 933-942. [32] AL SHBOUL A M, IZQUIERDO R. Printed chemiresistive In2O3 nanoparticle-based sensors with ppb detection of H2S gas for food packaging[J]. ACS Applied Nano Materials, 2021, 4(9): 9508-9517. [33] DAVIS G A Jr, PRUSTY G, HATI S, et al. Design of anisotropically shaped plasmonic nanocrystals from ultrasmall Sn-decorated In2O3 nanoclusters used as seed materials[J]. The Journal of Physical Chemistry C, 2022, 126(50): 21438-21452. [34] WANG Z H, HOU C L, DE Q M, et al. One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature[J]. ACS Sensors, 2018, 3(2): 468-475. [35] SONG Z L, GUAN W, ZENG J Y, et al. Pt-sensitized In2O3 nanotubes for sensitive acetone monitoring[J]. ACS Applied Nano Materials, 2022, 5(10): 15611-15618. [36] WANG H, FAN G J, YANG Z X, et al. Low-temperature As-doped In2O3 nanowires for room temperature NO2 gas sensing[J]. ACS Applied Nano Materials, 2022, 5(6): 7983-7992. [37] CHEN C Y, CHEN W X, LIU Q, et al. Electrospinning of Pd-In2O3 nanofibers for high-performance room temperature hydrogen sensors[J]. ACS Applied Nano Materials, 2022, 5(9): 12646-12655. [38] WANG X, SU J, CHEN H, et al. Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16335-16342. [39] GAO L P, CHENG Z X, XIANG Q, et al. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties[J]. Sensors and Actuators B: Chemical, 2015, 208: 436-443. [40] GAVASKAR D S, NAGARAJU P, RAMANA REDDY M V. Investigations on RuO2-In2O3 nanostructured porous composite thin films for benzene detection[J]. Microporous and Mesoporous Materials, 2022, 345: 112247. [41] CAO Y, ZHAO J, ZOU X X, et al. Synthesis of porous In2O3 microspheres as a sensitive material for early warning of hydrocarbon explosions[J]. RSC Advances, 2015, 5(7): 5424-5431. [42] XIAO B X, SONG S L, WANG P, et al. Promoting effects of Ag on In2O3 nanospheres of sub-ppb NO2 detection[J]. Sensors and Actuators B: Chemical, 2017, 241: 489-497. [43] ZHU G X, GUO L J, SHEN X P, et al. Monodispersed In2O3 mesoporous nanospheres: one-step facile synthesis and the improved gas-sensing performance[J]. Sensors and Actuators B: Chemical, 2015, 220: 977-985. [44] HAN D M, ZHAI L L, GU F B, et al. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature[J]. Sensors and Actuators B: Chemical, 2018, 262: 655-663. [45] WANG Y G, YAO L C, XU L J, et al. Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature[J]. Sensors and Actuators B: Chemical, 2021, 332: 129497. [46] LI Z J, YAN S N, ZHANG S C, et al. Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature[J]. Journal of Alloys and Compounds, 2019, 770: 721-731. [47] YANG S Q, SONG Z L, GAO N B, et al. Near room temperature operable H2S sensors based on In2O3 colloidal quantum dots[J]. Sensors and Actuators B: Chemical, 2019, 286: 22-31. [48] LUAN C H, WANG K, YU Q Q, et al. Improving the gas-sensing performance of SnO2 porous nanosolid sensors by surface modification[J]. Sensors and Actuators B: Chemical, 2013, 176: 475-481. [49] JEEM M, ZHANG L H, ISHIOKA J, et al. Tuning optoelectrical properties of ZnO nanorods with excitonic defects via submerged illumination[J]. Nano Letters, 2017, 17(3): 2088-2093. [50] CHANDRASENA R U, YANG W B, LEI Q Y, et al. Strain-engineered oxygen vacancies in CaMnO3 thin films[J]. Nano Letters, 2017, 17(2): 794-799. [51] LEI F C, SUN Y F, LIU K T, et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting[J]. Journal of the American Chemical Society, 2014, 136(19): 6826-6829. [52] LIU J J, CHEN G, YU Y G, et al. Controllable synthesis of In2O3 octodecahedra exposing{110}facets with enhanced gas sensing performance[J]. RSC Advances, 2015, 5(55): 44306-44312. [53] MENG Y, LIU G X, LIU A, et al. Photochemical activation of electrospun In2O3 nanofibers for high-performance electronic devices[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10805-10812. [54] WANG T, CHEN F, JI X H, et al. Novel Au-embedded In2O3 nanowire: synthesis and growth mechanism[J]. Superlattices and Microstructures, 2018, 122: 140-146. [55] HAO Y F, MENG G W, YE C H, et al. Controlled synthesis of In2O3 octahedrons and nanowires[J]. Crystal Growth & Design, 2005, 5(4): 1617-1621. [56] CHEN B C, LI P P, SUN L, et al. Co3O4 nanosheets decorated with In2O3 nanocubes with exposed{001}facets for ppb-level CO sensing[J]. ACS Applied Nano Materials, 2022, 5(8): 11011-11019. [57] YU Q, JIN R R, ZHAO L P, et al. MOF-derived mesoporous and hierarchical hollow-structured In2O3-NiO composites for enhanced triethylamine sensing[J]. ACS Sensors, 2021, 6(9): 3451-3461. [58] LI Q Y, HUANG N, CUI Y H, et al. Synthesis of porous rod-like In2O3 nanomaterials and its selective detection of NO at room temperature[J]. Journal of Alloys and Compounds, 2022, 902: 163632. [59] JUN L, CHEN Q, FU W H, et al. Electrospun Yb-doped In2O3 nanofiber field-effect transistors for highly sensitive ethanol sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38425-38434. [60] WANG J C, ZHANG F, WANG Y J, et al. Preparation of In(OH)3 and In2O3 nanorods through a novel hydrothermal method and the effect of Sn dopant on crystal structures[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2882-2889. [61] ZHANG Q, WANG S P, FU H, et al. Facile design and hydrothermal synthesis of In2O3 nanocube polycrystals with superior triethylamine sensing properties[J]. ACS Omega, 2020, 5(20): 11466-11472. [62] ZHANG B, BAO N, WANG T, et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires[J]. Journal of Alloys and Compounds, 2021, 867: 159076. [63] SAKAI G, MATSUNAGA N, SHIMANOE K, et al. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor[J]. Sensors and Actuators B: Chemical, 2001, 80(2): 125-131. [64] YAMAZOE N, SHIMANOE K. Theoretical approach to the gas response of oxide semiconductor film devices under control of gas diffusion and reaction effects[J]. Sensors and Actuators B: Chemical, 2011, 154(2): 277-282. [65] SUN X H, HAO H R, JI H M, et al. Nanocasting synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 401-409. [66] LIU M, JIANG W, SONG P, et al. MOF-derived In2O3 microtubes as an effective sensing material for sub-ppm-level triethylamine detection[J]. Inorganic Chemistry Communications, 2022, 140: 109455. [67] MA J W, FAN H Q, ZHANG W M, et al. High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method[J]. Sensors and Actuators B: Chemical, 2020, 305: 127456. [68] XUE D P, ZHANG S S, ZHANG Z Y. Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets[J]. Materials Letters, 2019, 252: 169-172. [69] PATIL S P, PATIL V L, SHENDAGE S S, et al. Spray pyrolyzed indium oxide thick films as NO2 gas sensor[J]. Ceramics International, 2016, 42(14): 16160-16168. [70] KARIM M R, FENG Z X, ZHAO H P. Low pressure chemical vapor deposition growth of wide bandgap semiconductor In2O3 films[J]. Crystal Growth & Design, 2018, 18(8): 4495-4502. [71] WANG Y Y, DUAN G T, ZHU Y D, et al. Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism[J]. Sensors and Actuators B: Chemical, 2016, 228: 74-84. [72] SHAALAN N M, RASHAD M, ABDEL-RAHIM M A. Repeatability of indium oxide gas sensors for detecting methane at low temperature[J]. Materials Science in Semiconductor Processing, 2016, 56: 260-264. [73] ZHOU B, LI Y, BAI J W, et al. Controlled synthesis of rh-In2O3 nanostructures with different morphologies for efficient photocatalytic degradation of oxytetracycline[J]. Applied Surface Science, 2019, 464: 115-124. [74] MA J W, FAN H Q, ZHAO N, et al. Synthesis of In2O3 hollow microspheres for chlorine gas sensing using yeast as bio-template[J]. Ceramics International, 2019, 45(7): 9225-9230. [75] MA H N, YU L M, YUAN X, et al. Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures[J]. Journal of Alloys and Compounds, 2019, 782: 1121-1126. [76] WANG S M, CAO J, CUI W, et al. Facile synthesis and excellent formaldehyde gas sensing properties of novel spindle-like In2O3 porous polyhedra[J]. Sensors and Actuators B: Chemical, 2016, 237: 944-952. [77] JIN X H, LI Y W, ZHANG B, et al. Temperature-dependent dual selectivity of hierarchical porous In2O3 nanospheres for sensing ethanol and TEA[J]. Sensors and Actuators B: Chemical, 2021, 330: 129271. [78] LU Z C, SIMA Z H, SONG P. MOF-derived nest-like hierarchical In2O3 structures with enhanced gas sensing performance for formaldehyde detection at low temperature[J]. Inorganic Chemistry Communications, 2022, 146: 110133. [79] CHAVA R K, CHO H Y, YOON J M, et al. Fabrication of aggregated In2O3 nanospheres for highly sensitive acetaldehyde gas sensors[J]. Journal of Alloys and Compounds, 2019, 772: 834-842. [80] YANG W, CHEN H T, LI C L, et al. Surface porosity-rich In2O3 microcubes as efficient channel for trace NO2 detection[J]. Materials Letters, 2020, 271: 127782. [81] HAN B Q, WANG J H, YANG W Y, et al. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis[J]. Sensors and Actuators B: Chemical, 2020, 309: 127788. [82] CHEN F, YANG M, WANG X, et al. Template-free synthesis of cubic-rhombohedral-In2O3 flower for ppb level acetone detection[J]. Sensors and Actuators B: Chemical, 2019, 290: 459-466. [83] XUE D P, WANG Y, ZHANG Z Y, et al. Porous In2O3 nanospheres with high methane sensitivity: a combined experimental and first-principle study[J]. Sensors and Actuators A: Physical, 2020, 305: 111944. [84] LIU J J, LIN X Y, SUN M M, et al. Thiourea-assistant growth of In2O3 porous pompon assembled from 2D nanosheets for enhanced ethanol sensing performance[J]. Talanta, 2020, 219: 121323. [85] CAO E S, WU L J, ZHANG Y J, et al. Hydrothermal synthesis of cubic-rhombohedral-In2O3 microspheres with superior acetone sensing performance[J]. Applied Surface Science, 2023, 613: 156045. [86] NAVALE S T, LIU C, YANG Z, et al. Low-temperature wet chemical synthesis strategy of In2O3 for selective detection of NO2 down to ppb levels[J]. Journal of Alloys and Compounds, 2018, 735: 2102-2110. [87] WEN Z, ZHU L P, MEI W M, et al. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing[J]. Journal of Materials Chemistry A, 2013, 1(25): 7511-7518. [88] LI J W, LIU X, CUI J S, et al. Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10108-10114. [89] LIU N, LI Y, LI Y N, et al. Tunable NH4F-assisted synthesis of 3D porous In2O3 microcubes for outstanding NO2 gas-sensing performance: fast equilibrium at high temperature and resistant to humidity at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14355-14364. [90] LI Y Y, CHEN J L, GONG F L, et al. Dual functionalized Ni substitution in shuttle-like In2O3 enabling high sensitivity NH3 detection[J]. Applied Surface Science, 2022, 600: 154158. [91] ZHANG Y J, CAO J L, WANG Y. Ultrahigh methane sensing properties based on Ni-doped hierarchical porous In2O3 microspheres at low temperature[J]. Vacuum, 2022, 202: 111149. [92] RI J S, LI X W, SHAO C L, et al. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature[J]. Sensors and Actuators B: Chemical, 2020, 317: 128194. [93] SONG L F, DOU K P, WANG R R, et al. Sr-doped cubic In2O3/rhombohedral In2O3 homojunction nanowires for highly sensitive and selective breath ethanol sensing: experiment and DFT simulation studies[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1270-1279. [94] DU W J, SI W X, ZHAO J B, et al. Mesoporous Fe-doped In2O3 nanorods derived from metal organic frameworks for enhanced nitrogen dioxide detection at low temperature[J]. Ceramics International, 2020, 46(12): 20385-20394. [95] KULKARNI S C, BHALERAO K D, SHIRSE S, et al. Screen printed Zn-doped nanostructured In2O3 thick films, characterizations, and enhanced NO2 gas sensing at low temperature[J]. Ceramics International, 2022, 48(19): 29298-29306. [96] ZHANG W H, DU S H, ZHANG J Y, et al. Carambola-like Zn-doped In2O3 structures with conductometric ethanol sensing properties[J]. Sensors and Actuators B: Chemical, 2022, 372: 132635. [97] BAI Y J, LIU L Y, DUAN X K, et al. Electron structure effects of S-doped In2O3 flowers on NO2 sensitivity[J]. Materials Research Bulletin, 2023, 165: 112293. [98] SINGH N, GUPTA R K, LEE P S. Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2246-2252. [99] LI X Y, SUN G T, FAN F, et al. Au25 nanoclusters incorporating three-dimensionally ordered macroporous In2O3 for highly sensitive and selective formaldehyde sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 564-573. [100] FENG B X, WU Y, CHEN Y Q, et al. Polyphenol-mediated synthesis of mesoporous Au-In2O3 nanospheres for room-temperature detection of triethylamine[J]. ACS Applied Nano Materials, 2022, 5(7): 9688-9697. [101] UEDA T, BOEHME I, HYODO T, et al. Effects of gas adsorption properties of an Au-loaded porous In2O3 sensor on NO2-sensing properties[J]. ACS Sensors, 2021, 6(11): 4019-4028. [102] SONG Z L, ZHOU S Q, LV T P, et al. In2O3 Hollow porous nanospheres loaded with Ag nanoparticles to achieve wide concentration range triethylamine detection[J]. Materials Research Bulletin, 2022, 153: 111881. [103] LIU Y N, LI S, XIAO S, et al. In2O3 microtubes decorated with Ag nanoparticles for NO2 gas detection at room temperature[J]. Vacuum, 2022, 202: 111197. [104] SUN J, SONG P, ZHANG S, et al. Ag nanoparticles-functionalized dumbbell-shaped In2O3 derived from MIL-68(In) with excellent sensitivity to formaldehyde[J]. Journal of Alloys and Compounds, 2021, 888: 161509. [105] KONG D L, NIU J Y, HONG B, et al. Ag-nanoparticles-anchored mesoporous In2O3 nanowires for ultrahigh sensitive formaldehyde gas sensors[J]. Materials Science and Engineering: B, 2023, 291: 116394. [106] LIU B, XU Y M, LI K, et al. Pd-catalyzed reaction-producing intermediate S on a Pd/In2O3 surface: a key to achieve the enhanced CS2-sensing performances[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16838-16846. [107] GU F B, SU Y, HONG S, et al. Effects of hydrogen treatment on the triethylamine-sensing properties of the platinum-loaded In2O3 nanosheets[J]. Sensors and Actuators B: Chemical, 2022, 372: 132632. [108] ZHANG Q, WANG S P, WANG L W, et al. Vapor-phase modulated sphere-like In2O3@N-C complexes for improving gas sensitivity[J]. Journal of Alloys and Compounds, 2021, 865: 158702. [109] WAN K C, WANG D, WANG F, et al. Hierarchical In2O3@SnO2 core-shell nanofiber for high efficiency formaldehyde detection[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45214-45225. [110] FU H T, YANG X H, WU Z X, et al. Gas-sensing performance of In2O3@MoO3 hollow core-shell nanospheres prepared by a two-step hydrothermal method[J]. Sensors and Actuators B: Chemical, 2022, 352: 131007. [111] WANG X H, WANG S C, WANG H Y, et al. Comparative and mechanistic analysis of the ethanol gas sensing properties of ZnO@In2O3 and In2O3@ZnO spherical heterostructures[J]. Journal of Alloys and Compounds, 2023, 930: 167468. [112] SUN D, WANG W, ZHANG N, et al. g-C3N4/In2O3 composite for effective formaldehyde detection[J]. Sensors and Actuators B: Chemical, 2022, 358: 131414. [113] YAN S, ZHANG S Z, XIE W F, et al. Chemiresistive ethanol sensors based on In2O3/ZnSnO3 nanocubes[J]. Sensors and Actuators Reports, 2022, 4: 100099. [114] ZHANG K, QIN S W, TANG P G, et al. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures[J]. Journal of Hazardous Materials, 2020, 391: 122191. [115] ZHANG Y J, JIANG Y D, DUAN Z H, et al. Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity[J]. Journal of Hazardous Materials, 2022, 434: 128836. [116] MA Q, CHU S S, LI H, et al. Cubic-like In2O3/α-Fe2O3 heterostructures assembled with 2D porous nanoplates for superior triethylamine gas-sensing behavior[J]. Materials Letters, 2021, 302: 130452. [117] SUN D, WANG Q L, WANG W, et al. Hollow ZnWO4/In2O3 nanotubes for ultrasensitive and rapid trace detection of triethylamine[J]. ACS Applied Nano Materials, 2023, 6(12): 10581-10589. [118] ZHANG S, LIN Z G, SONG P, et al. MOF-derived In2O3 nanotubes/Cr2O3 nanoparticles composites for superior ethanol gas-sensing performance at room temperature[J]. Ceramics International, 2022, 48(19): 28334-28342. [119] MENG D, QIAO T T, WANG G S, et al. Rational design of CuO/In2O3 heterostructures with flower-like structures for low temperature detection of formaldehyde[J]. Journal of Alloys and Compounds, 2022, 896: 162959. [120] FENG G Q, CHE Y H, WANG S H, et al. Sensitivity enhancement of In2O3/ZrO2 composite based acetone gas sensor: a promising collaborative approach of ZrO2 as the heterojunction and dopant for in situ grown octahedron-like particles[J]. Sensors and Actuators B: Chemical, 2022, 367: 132087. [121] WANG Y, YAO M X, GUAN R F, et al. Enhanced methane sensing performance of NiO decorated In2O3 nanospheres composites at low temperature[J]. Journal of Alloys and Compounds, 2021, 854: 157169. [122] JI Y, ZHANG N, XU J H, et al. Co3O4/In2O3 p-n heterostructures based gas sensor for efficient structure-driven trimethylamine detection[J]. Ceramics International, 2023, 49(11): 17354-17362. [123] CHEN Q, MA S Y, XU X L, et al. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres[J]. Sensors and Actuators B: Chemical, 2018, 264: 263-278. [124] ZENG X G, LIU L, LV Y F, et al. Ultra-sensitive and fast response formaldehyde sensor based on La2O3-In2O3 beaded nanotubes at low temperature[J]. Chemical Physics Letters, 2020, 746: 137289. [125] LIU M, SONG P, ZHAO B, et al. Construction of CuO nanoparticles decorated In2O3 hierarchical structure for ultrasensitive and rapid trace detection formaldehyde at low temperature[J]. Sensors and Actuators B: Chemical, 2024, 404: 135276. [126] FANG J, XI C, XIAO R P, et al. High performance ethanol sensor based on Pr-SnO2/In2O3 composite[J]. Ceramics International, 2021, 48(7): 9897-9905. [127] HU K L, ZHAO Q, GUO Y X, et al. Dual mechanisms of Pd-doped In2O3/CeO2Nanofibers for hydrogen gas sensing[J]. ACS Applied Nano Materials, 2022, 5(5): 6232-6240. [128] ZHANG D Z, CAO Y H, YANG Z M, et al. Nanoheterostructure construction and DFT study of Ni-doped In2O3 nanocubes/WS2 hexagon nanosheets for formaldehyde sensing at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11979-11989. [129] MENG F J, GUO X M. Tuning the oxygen defects and Fermi levels via In3+ doping in SnO2-In2O3 nanocomposite for efficient CO detection[J]. Sensors and Actuators B: Chemical, 2022, 357: 131412. [130] DENG Z M, ZHANG Y M, SONG Z L, et al. Pd-SnO2/In2O3 with a unique structure for the ultrasensitive detection of triethylamine near room temperature[J]. ACS Sensors, 2022, 7(11): 3501-3512. |
[1] | 南博洋, 洪瑞金, 陶春先, 王琦, 林辉, 韩朝霞, 张大伟. 基于金属锡掺杂浓度变化的光学性能可调谐ITO薄膜制备研究[J]. 人工晶体学报, 2023, 52(9): 1617-1623. |
[2] | 黎少君, 姚悦, 陈俊明. SnS2气敏材料研究进展[J]. 人工晶体学报, 2023, 52(4): 701-709. |
[3] | 张瑞恩, 陈林聪, 李欣然, 赵海龙, 符小桃, 范晓舟, 雷添翔. Ru掺杂MoS2对SO2F2和H2S气体吸附的第一性原理研究[J]. 人工晶体学报, 2023, 52(2): 298-306. |
[4] | 朱化强, 龙开琳, 刘风坤. 低成本氧化铟锡基底的制备及其SERS活性[J]. 人工晶体学报, 2022, 51(2): 263-270. |
[5] | 程林, 张磊. 近红外可调辐射方向的非线性光学天线[J]. 人工晶体学报, 2021, 50(7): 1356-1361. |
[6] | 张阿梅. 建筑环境下基于ZnO纳米线甲醛气体检测传感器的研究[J]. 人工晶体学报, 2020, 49(10): 1857-1862. |
[7] | 任千尚;唐瑾晖;黄伟;任慧志;魏长春;王广才;许盛之;赵颖;张晓丹. 平面硅异质结太阳电池的光吸收增强的研究[J]. 人工晶体学报, 2018, 47(6): 1089-1095. |
[8] | 郭根生;严继康;徐腾威;李震宇;易健宏;甘国友. Sb掺杂K0.5Na0.5NbO3无铅压电陶瓷相结构和电学性能的研究[J]. 人工晶体学报, 2018, 47(2): 338-342. |
[9] | 桂阳海;杨乐乐;王海燕;李晓蒙;张宏忠. 无机盐添加剂对纳米WO3/rGO气敏性能的影响[J]. 人工晶体学报, 2018, 47(10): 2115-2120. |
[10] | 李震宇;甘国友;徐腾威;郭根生;杜景红;张家敏;严继康;易健宏. CeO2掺杂KNN-LiNbO3无铅压电陶瓷的压电与介电性能研究[J]. 人工晶体学报, 2017, 46(9): 1767-1772. |
[11] | 曹敏驰;刘洋;侯淑新;陈春润;徐腾;何竞;杨爽;王浩然;李心宏;刘曰利. PbS量子点/MoO3纳米带复合材料的低温气敏性能研究[J]. 人工晶体学报, 2017, 46(8): 1480-1486. |
[12] | 庄怀娟;王丁;王现英;王朋朋;郑学军. CuO/ZnO多孔复合纳米纤维的制备及气敏性能研究[J]. 人工晶体学报, 2015, 44(12): 3526-3531. |
[13] | 张伟君;刘颖;张晓臣;宋美慧;阚侃. 多级结构CuO微球的制备及室温NOx气敏性能研究[J]. 人工晶体学报, 2015, 44(12): 3553-3558. |
[14] | 阚侃;葛云龙;林雨斐;刘士强;高军;史克英. 三维花状Ni(OH)2/CNT纳米复合材料制备及NOx气敏性能研究[J]. 人工晶体学报, 2014, 43(7): 1723-1728. |
[15] | 法文君;王笑阳;王振宇;王初哲;卢晓娅;李鹏;郑直. 纳米碳酸钙基浅色导电粉的制备及性能研究[J]. 人工晶体学报, 2013, 42(9): 1955-1959. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||